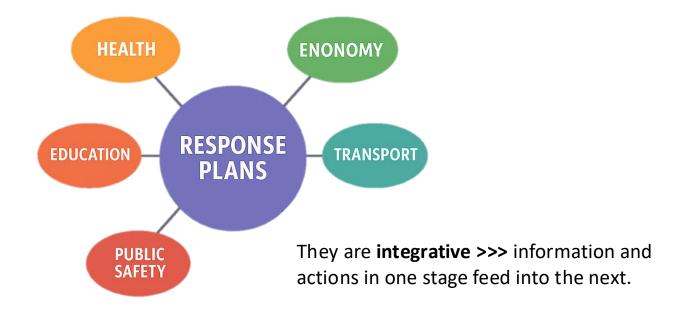

Marine heatwave response plans for ecosystems and fisheries

Dr Curtis Champion


Senior Research Scientist

NSW DPIRD

Response plans are a structured set of actions designed to address an actual or potential threat to something you want to protect.

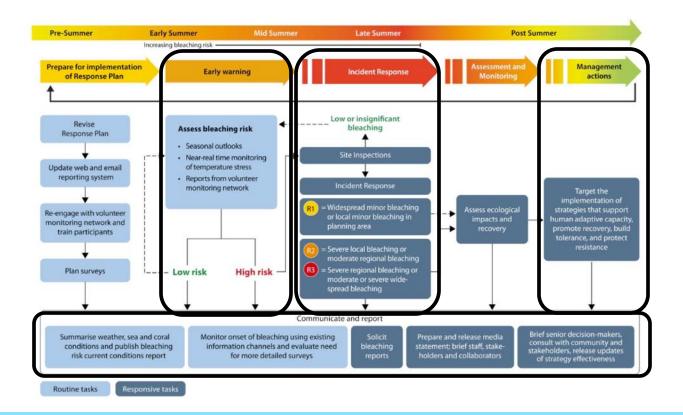
Towards marine heatwave response plans...

scenarios (R, I, M, P)

	Action	Example
Assess risk	Obtain baseline data using long-term monitoring programs and historical studies (R, I) Revisit past marine heatwave effects in region of interest (I) Estimate risk, intensity and duration of marine heatwaves during El Niño in region of interest (R)	Marine heatwave historical analyses — for example www.marineheatwaves.org. In eastern Tasmania, an atlas of marine heatwaves can be used to revisit past events and understand the frequency, intensity, duration and impacts of past events(1).
	Identify vulnerable ecological areas and populations using vulnerability assessment approaches (R)	Determine population susceptibility for different species (for example shallow or sessile). Measure thermal thresholds for species/populations survival. Knowledge from past events can inform expected impacts and improve responses, as occurred for lobster fisheries in Maine, USA(2).
Plan responses	Prioritize high-risk areas and populations for response using vulnerability mapping (R,I,P)	Based on mapping, aquaculture companies can prepare to shift populations to cooler parts of their lease sites, and fallow the warmer sites(7). Harvest before the forecast event.
)	Develop early warning systems based on ecosystem monitoring, ocean forecasting and available real-time information (R)	Develop skills in using existing ocean information websites, such as provided by observing programs — for example Australia's integrated marine observing system (IMOS) or www.marineheatwaves.org . Deploy monitoring equipment around area of activity, such as gliders.
Act during an event	Capture data relevant to expected impact and responses using a range of remote and in situ methods (R)	Undertake real time analysis or use existing resources (e.g. www.marineheatwaves.org). Undertake eDNA sampling, habitat surveys, fish surveys.
>	Adapt operations during the event via management strategies for human endeavours (I)	Alter timing of stocking or types of organisms (for example, source heat-tolerant species). Diversify activities. Move mobile activities to lower-risk areas (such as deeper waters). Reduce quotas or close fishery areas, change zones of operation based on real-time monitoring.
Learn and adjust	Assess recovery time post-event using data collected in the previous stages (I)	Implement or continue changes to harvesting, quotas, change industry operations and/or reduce other stressors until system recovers. Data repositories (such as www.imos.org.au) can be used to determine when environmental conditions have returned to preevent levels.
	Plan long term management responses, such as breeding programs for aquaculture species, or codify adaptive management approaches based on a range of plausible scenarios (R. I. M. P)	Consider the long-term risks from increasing frequency of extreme events and if system changes are needed using system models (for example ref. 7).

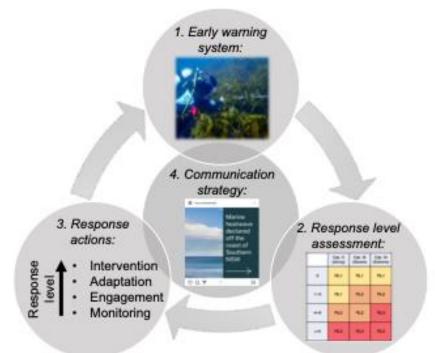
How can these actions be **linked and trigger** others?

It helps if we have a:


- 1. Defined spatial and temporal extent,
- New South Wales
- 'Marine heatwave season'

And,

- 2. Level of specificity (general or tailored for specific industries or ecosystems)
- A general plan
- An industry specific plan


Leveraging from coral bleaching response plans...

Curtis Champion a,b,* O, Melinda A. Coleman a,b,c

- Fisheries Research, NSW Department of Primary Industries and Regional Development, Coffs Harbour, NSW, Australia
- Southern Cross University, National Marine Science Centre, Coffs Harbour, NSW, Australia
 GUWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, WA, Australia

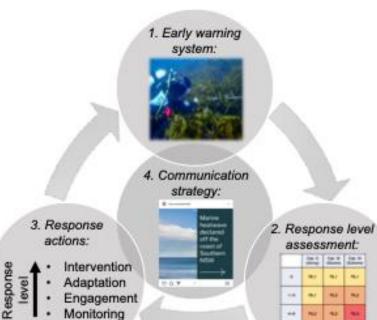
1. Early warning system

"MHW monitoring window": 1 December – 31 May

SST forecasts from ACCESS-S are reviewed on the first day of each month.

Anomalies > 1 °C initiate ~daily monitoring of the near real-time MHW tracker (weekly monitoring if < 1°C anomalies).

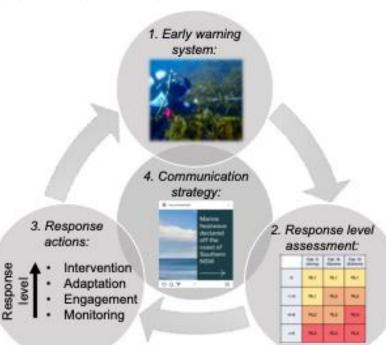
Onset of category 2 or greater MHW conditions for > 7 days initiates on-ground monitoring.



In NSW, includes replicated dive or video surveys untaken by trained research staff within areas experiencing MHW conditions and engagement with fishing, aquaculture and diving stakeholders to scope rapid biological indicators of thermal stress.

Curtis Champion a,b,* 0, Melinda A. Coleman a,b,c

- ^a Fisheries Research, NSW Department of Primary Industries and Regional Development, Coffs Harbour, NSW, Australia
- b Southern Cross University, National Marine Science Centre, Coffs Harbour, NSW, Australia
- c UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, WA, Australia

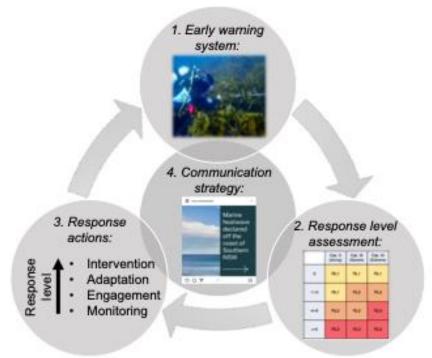

2. Response level assessment

	MHW category			
ermal		Cat. II (strong)	Cat. III (Severe)	Cat. IV (Extreme)
ators of th	0	RL1	RL1	RL1
Number of biological indicators of thermal stress identified	1–3	RL1	RL2	RL2
of biologi stres	4–6	RL2	RL2	RL3
Number	> 6	RL3	RL3	RL3

Curtis Champion a,b,* O, Melinda A. Coleman a,b,c

- ^a Fisheries Research, NSW Department of Primary Industries and Regional Development, Coffs Harbour, NSW, Australia
- ^b Southern Cross University, National Marine Science Centre, Coffs Harbour, NSW, Australia
- Cuwa Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, WA, Australia

3. Response actions

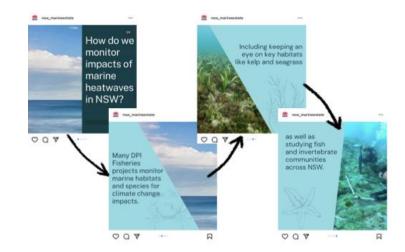

Response actions	Responsible sectors
Undertake targeted research and monitoring to assess impacts during and following MHW conditions.	Research
Promote participation in marine citizen science programs (e.g. Redmap and Reef Life Survey) within areas experiencing MHW conditions to assess impacts.	Research, management
Cease restoration activities until thermal conditions have returned to suitable range.	Research, management
Undertaken rapid industry and cross sectoral engagement to identify and assess additional management and training options specific to affected areas and activities.	Management, Fisheries Aquaculture
Engage with industry to promote adaptive harvest techniques and aquaculture system options.	Management, Fisheries Aquaculture
Make assets available for emergency responses (e.g. starving animals or emergency translocation of threatened species) and alert groups to be ready to respond (e.g. volunteer groups, indigenous rangers).	Aquaculture, Non- government organisations
7. Temporarily cease harvest of aquaculture species until MHW conditions dissipate and species physiological condition is verified.	Aquaculture
Increase enforcement of fishing restrictions within areas experiencing MHW conditions, including bag and size limits and no-take marine protected areas.	Management
Redistribute fishing effort to areas outside of the MHW extent or thermal refugia within the MHW extent (e.g. regions of cooler water upwelling).	Fisheries, research
10. Temporarily amend size, possession or bag limits for impacted species.	Management
11. Apply spatial or temporal closures to provide additional stock and habitat protection.	Management
12. Artificial shading and cooling of aquaculture infrastructure (e.g. oyster leases).	Aquaculture
13. Undertake translocation programs to minimise impacts to threatened and other species (e.g. corals and kelp) that are sensitive to MHW impacts.	Research, management
14. Undertake stock enhancement and/or conservation breeding programs for vulnerable species for reintroduction following MHW conditions.	Research, management

Curtis Champion a,b,* O, Melinda A. Coleman a,b,c

- ^a Fisheries Research, NSW Department of Primary Industries and Regional Development, Coffs Harbour, NSW, Australia
- b Southern Cross University, National Marine Science Centre, Coffs Harbour, NSW, Australia
- Current Control of Western Australia, Crawley, WA, Australia

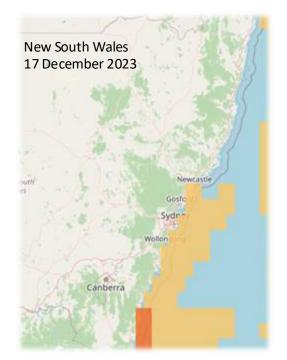
4. Communication strategy

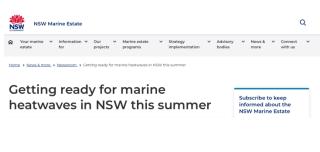
NSW Government prepared for marine heatwaves


Minister for Agriculture and Western NSW - Media Release

8 Dec 2023

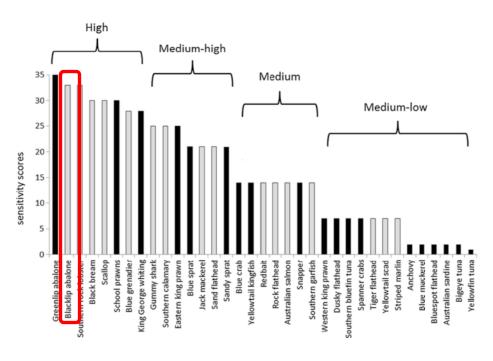
CSIRO has declared a marine heatwave for the NSW south coast and further Marine heatwaves are expected along the NSW coast, with sea temperatures forecast by the Bureau of Meteorology to be up to 2.5°C warmer than normal this summer.


The NSW Government in collaboration with key agencies and stakeholders has developed a response plan that includes:


- Early Warning System monitoring to detect physical and biological impacts and the onset of heatwaves;
- · Incident Response establishing a structure to implement a response and coordinate the processes;
- · Management Actions activities that could be used to boost resilience and promote recovery; and,
- Communication Strategy early and regular communication to ensure consistent, credible and accurate information is communicated about events, responses and recovery.

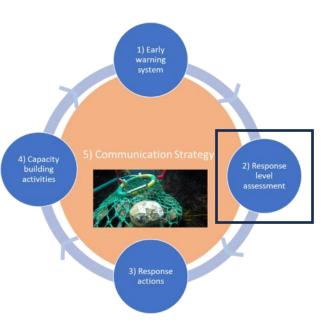
Enacting the plan...

	MHW category			
ermal		Cat. II (strong)	Cat. III (Severe)	Cat. IV (Extreme)
tors of th	0	RL1	RL1	RL1
cal indica s identifie	1–3	RL1	RL2	RL2
Number of biological indicators of thermal stress identified	4–6	RL2	RL2	RL3
Number	> 6	RL3	RL3	RL3


Response actions	Responsible sectors
Undertake targeted research and monitoring to assess impacts during and following MHW conditions.	Research
Promote participation in marine citizen science programs (e.g. Redmap and Reef Life Survey) within areas experiencing MHW conditions to assess impacts.	Research, management
Cease restoration activities until thermal conditions have returned to suitable range.	Research, management
 Undertaken rapid industry and cross sectoral engagement to identify and assess additional management and training options specific to affected areas and activities. 	Management, Fisheries, Aquaculture
Engage with industry to promote adaptive harvest techniques and aquaculture system options.	Management, Fisheries, (

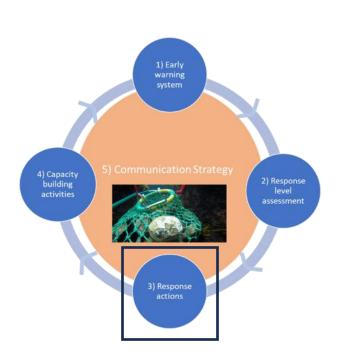
Reflected outside the marine heatwave monitoring window

Industry-focused and co-developed response plans: NSW abalone industry



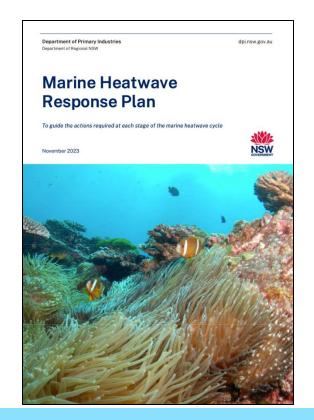
Pecl *et al.* (2014) Rapid assessment of fisheries species sensitivity to climate change. *Climate Change* 127: 505–520.

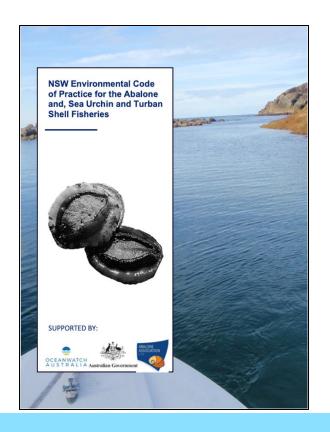
Industry-focused and co-developed response plans: NSW abalone industry



Indicators of thermal stress in abalone	Tier 1, 2 or 3 indicators
'Mushrooming' (i.e. individual rising from substrate).	1
Weak retention to substrate (can be associated with thermal stress and is associated with subsequent higher mortality if animals are removed under elevated thermal conditions).	1
Evidence of small-scale abalone mortality events (e.g. clusters of uptumed shells).	1
Increased levels of mortality post-harvest.	1
Lack of meat bulging beneath the shell (indicative of heat-induced starvation).	2
Abscesses or cysts with associated bacterial infections.	2
Elevated levels of biofouling.	3
Early spawning.	3
Higher occurrence of 'shiny-back' individuals due to conspecifics grazing on top of each other due to lack of suitable food on the substratum. This can be an indication of starvation stress.	3
Signs of thermal stress among other organisms in areas experiencing marine heatwave conditions	3

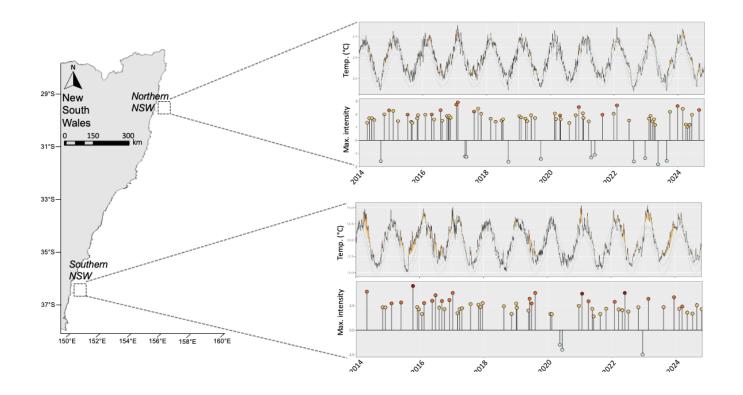
	Number of observed individuals displaying indicators of thermal stress			
ıal		Up to 5%	Up to 30%	More than 30%
llone therm ntified	Tier 3 indicator(s) evident	Low	Low	Medium
Indicators of abalone thermal stress identified	Tier 2 indicator(s) evident	Low	Medium	High
Indica	Tier 1 indicator(s) evident	Medium	High	High


Industry-focused and co-developed response plans: NSW abalone industry



Example response actions	Response level
Use of separators (corflute or damp course) in between abalone. Use of hessian sacks on top to keep harvested abalone cool.	Low
Rapid assessment of spatial extent of marine heatwave impacts to abalone on additional reefs after initial biological indicators are observed at a single site(s).	Low
Limit harvest to regions of the coast experiencing north-easterly wind- driven upwelling.	Medium
Further modifying on-vessel procedures. E.g., not using warm surface water for deck washing, hang individuals over the side of the vessel in deeper cooler water to limit stress and maximise the quality of the product, use of a small amount of ice to cool holding tubs.	Medium
Translocate healthy individuals from areas experiencing marine heatwave impacts to refuges (e.g. deeper or cooler reefs not experiencing marine heatwave conditions). Individuals that are not displaying signs of thermal stress should be used in emergency translocation efforts to enhance their survivability and minimise negative interactions with individuals present in areas they are translocated.	High
Cease fishing and push for harvest strategy to allow withholding portions of unused quota for future fishing years.	High

Finding homes for marine heatwave response plans



A decade of marine heatwaves in New South Wales

Example response actions	Response level
Use of separators (corflute or damp course) in between abalone. Use of	Low
hessian sacks on top to keep harvested abalone cool.	
Rapid assessment of spatial extent of marine heatwave impacts to	Low
abalone on additional reefs after initial biological indicators are	
observed at a single site(s).	
Limit harvest to regions of the coast experiencing north-easterly wind-	Medium
driven upwelling.	
Further modifying on-vessel procedures. E.g., not using warm surface	Medium
water for deck washing, hang individuals over the side of the vessel in	
deeper cooler water to limit stress and maximise the quality of the	
product, use of a small amount of ice to cool holding tubs.	
Translocate healthy individuals from areas experiencing marine	High
heatwave impacts to refuges (e.g. deeper or cooler reefs not	
experiencing marine heatwave conditions). Individuals that are not	
displaying signs of thermal stress should be used in emergency	
translocation efforts to enhance their survivability and minimise	
negative interactions with individuals present in areas they are	
translocated.	
Cease fishing and push for harvest strategy to allow withholding	High
portions of unused quota for future fishing years.	

