

Investigating Data Assimilation Methodologies for Improved Swell Prediction Accuracy

Marzieh H. Derkani, Jeff Hansen, Stefan Zieger, Seyed Mostafa Siadatmousavi, Duphrin Joseph

Southern Ocean Swell

Southern Ocean is a major swell generation region for much of the world's oceans

Swell at Northwest Shelf

Inaccuracies in swell prediction

Caused by limitations in:

- Observational data,
- Theoretical assumptions, and
- Their implementation.

Incorporating wave observations through data assimilation can reduce uncertainty in swell predictions

Data Assimilation

Australian Government Bureau of Meteorology

Model	Name	Data Assimilation
Atmospheric	ACCESS	4D VAR
Ocean	OceanMAPS	Ensemble KF
Wave	AUSWAVES	No DA

DA in operational wave models (e.g., ECMWF and MeteoFrance): reliant on bulk parameters.

Objective:

Develop spectral wave assimilation methods to improve the prediction capabilities of operational forecasts with a focus on swells.

SOFAR's Network of Spotter Buoys

Observational Data

18 Apr. 2023 10 wawaves.org THE UNIVERSITY OF WESTERN AUSTRALIA H (m) 10 8 Hs (m) 6 2 10 H^s (m) 6 2 May Jun Jul Aug Sep Oct Nov

2023

6

WAWAVES.org

Other Observational Data

Industry Operated Buoys at NWS

Satellite Observations

Mean parameters:

Altimeter

Integrated Marine Observing System

Wave Energy Spectra:

Synthetic Aperture Radar (SAR), and Chinese-French Oceanography Satellite (CFOSAT).

AUSWAVE-G3

A multiple-resolution global wave model

Stefan Zieger and Diana J. M. Greenslade

May 2021

WaveWatch-III v6.07 wave model

Current: OceanMAPS Spectral resolution: 30 direction bins 28 frequency bins (0.0412Hz - 0.5401Hz)

Spatial resolution:

~12km global with ~6km sub-grid

Assessment of AUSWAVE-G3

08 Jul. 2021 00:00

Assessment of AUSWAVE-G3

60

120

60

0.3

9n

0.3

90

Model #1: Same as AUSWAVE-G3 with ECMWF winds and Copernicus currents.

Model #2: Same as Model #1 with increased spectral resolution (8° dirs. & 45 freq. bins).

11

Data Assimilation in WaveWatch-III

Approach 1) Update the "Initial Condition"

Approach 2) Incorporate the DA scheme into the model

12

Assimilation of Hs

08 Jul. 2021 00:00

08 Jul. 2021 00:00

Assimilation of Partitioned Hs

Next Steps...

- Assimilation of observations in the spectral domain.
- Investigating alternative data assimilation techniques e.g., the Kalman Filter.
- Explore the model's performance with the assimilation of observations from various sources e.g., satellite.
- Improving the knowledge of the physical processes active in the swell propagation and decay.

Summary

Inaccuracies in swell predictions (e.g., arrival time) impact offshore operations, coastal protection measures, and climate models.

Increased availability of wave observations provide an opportunity for improved wave predictions through techniques such as DA.

DA techniques applied to wave models predominantly rely on bulk parameters while the ultimate gain is in spectral assimilation.

Data Assimilation Methods

	Variational	Analysis Equation:	Innovation $\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{W}(\mathbf{v} - \mathbf{H}\mathbf{x}^{f})$
ata Assimilation	3D VAR 4D VAR	Kalman Gain:	$\boldsymbol{W} = \boldsymbol{C}^{f} \boldsymbol{H}^{T} (\boldsymbol{H} \boldsymbol{C}^{f} \boldsymbol{H}^{T} + \boldsymbol{C}^{o})^{-1}$
	Sequential	Gaussian:	$P(i,j) = \frac{V^f}{V^f + V^o} \exp\left(-\frac{(r_{ij})^2}{2L^2}\right)$
	Optimal Interpolation Kalman Filter	2 nd Order Autoregressive:	$P(i,j) = \frac{V^f}{V^f + V^o} \left(1 + \frac{r_{ij}}{L}\right) \exp\left(\frac{-r_{ij}}{L}\right)$