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Theme 1: 
Characterising the 
ocean environment 
using sparse (and 
uncertain) data

Theme 2: Predicting 
environmental effects 

on structures at the sea-
surface for enhanced 

decision making

Theme 3: Managing 
living infrastructure on 

an evolving seabed

Digital 
Engineering

Field Data

New science and technologies to transform operation of 
offshore energy infrastructure

agile decision-making | improved safety | increased efficiency 
long-term reliability | lower environmental risk

Transforming energy Infrastructure 
through Digital Engineering Research Hub

Development of new science and technology through digital 
engineering to optimise the management of offshore energy 
infrastructure – thereby making this activity cheaper and yet 
more reliable.

Digital Engineering is the creation, use and embedment of 
data in engineering.

Oceanography focus: Prediction of nonlinear internal waves 
and submesoscale eddies using “traditional” physical models 
and new “data science” methods



Transforming energy Infrastructure 
through Digital Engineering Research Hub

Our partners 



Setting the scene
• Tidal harmonic analysis is useful for predicting water level in coastal regions
• It is also useful for predicting ocean currents and water temperature in some 

offshore locations where internal waves are active
• The utility of tidal predictions (i.e. their useability for decision-makers) is usually 

judged from some bulk measure of residual properties (rmse, skill, etc.)
• Threshold for a "good fit" is usually left to the decision-maker... resulting in ad-hoc 

decisions

What should decision-makers (operators) do with the model residual?



Example 1: Broome sea-level

Question: Is the residual OK for my needs?

𝑦 =#
!

𝐴!cos 𝜙! + 𝐵!sin 𝜙! + 	ε

Data source: Australian Baseline Sea Level Monitoring Project (BoM)



Example 2: Hillarys sea-level

Question: Is the residual OK for my needs?

𝑦 =#
!

𝐴!cos 𝜙! + 𝐵!sin 𝜙! + 	ε

Data source: Australian Baseline Sea Level Monitoring Project (BoM)



Example 3: NWS ocean currents
𝑦 =#

!

𝐴!cos 𝜙! + 𝐵!sin 𝜙! + 	ε

Question: Is the residual OK for my needs?

Question 2: If no, can I retain the residual for decision-making?

Data source: IMOS National Mooring Network (NWSBRW)



A solution to keeping the residual
Model the tides deterministically (i.e. harmonics) and the residual as a stochastic
process by retaining the same statistical properties

• Stochastic process: random draw of one possible outcome. This can be done many times e.g. 
Monte Carlo analysis.

• Similar statistical properties: signal variance partitioned into similar frequencies i.e. similar power 
spectral density

A solution is a machine learning technique called Gaussian Process Regression
Advantages of the method:

• Makes stochastic forecasts à uncertainty quantification
• It can be fast to train (compared to deep learning)
• It is much cheaper to run than traditional ocean models
• It is interpretable (parameters may be set by an expert without data)
• Predictions look realistic (not too smooth, not too rough)



Multivariate Normal Distribution
𝑦~𝑀𝑉𝑁 𝛍, Σ

• 𝛍 = mean function (e.g. tidal harmonics)
• Σ = covariance kernel, Σ ≈ K(x, x/; 𝜃) (the statistical relationship 

between time points)



Gaussian Process Regression
• Loose definition: Multivariate normal distribution conditioned on some data

The key to the method producing useful forecasts is in the choice of covariance kernel, Σ ≈ K x, x!; 𝜃
à We do this based on the power spectrum of the tidal harmonic residual



Power Spectrum ßà MV Normal 
• Similar statistical properties: signal variance partitioned into similar frequencies i.e. 

similar power spectral density as the model residual 
• à “realistic looking predictions”



Stochastic predictions

Observations Prediction

Data source: IMOS National Mooring Network (NWSBRW)

• Random draws from a multivariate normal (purple/gray) 
conditioned on the observation data (blue)

• We can push these draws (ensembles) into other models to 
quantify uncertainty in that model



Application Example
Uncertainty quantification of tidal forecast

• 14-d forecast at Broome tide gauge
• Gray lines are the stochastic predictions, red is truth

Example question: what is the probability of water level 
dropping below value -3.5 m in the next 14 days?

Broome Sea Level



Conclusions
• Machine learning method to make stochastic predictions with similar statistical (spectral) 

properties as observations of e.g. sea level, currents, water temperature. 
à Realistic looking predictions

• Uncertainty quantification is a key by-product
• Extends the useability of tidal harmonic predictions to regions with mixture of tides and 

other ocean processes e.g. eddies, internal waves
• This method has been used operationally by offshore operators for ocean current 

prediction
• Pushing model uncertainty into decision-making frameworks remains a hurdle

• requires forward propagation of many outcomes into response/decision models using Monte 
Carlo methods

• This is time consuming and very specific to each use case
• Ensemble forecasts suffer similar issues
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