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Project aim

ISSUE:
There are no tools for rapid quantification of ocean surface currents at scale that are viable to support

operational decision making

OPPORTUNITY:
Methodological, technological and economic developments are always presenting new opportunities

— Even for old methods

Progress towards an operational tool for surface current estimation using surface wave inversion

AIM:
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Focus of this talk:

How should we
manage this
uncertainty in
operation?
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Figures from Yurovskaya et al. (2017)



Background:

Single wave in the presence of currents

Current direction ->

——- Zero current theory

—— Observed
Shift

Current speed = Shift / Time

(Doppler shift)



Background:

Wave spectrum in the presence of currents

e Current direction ->

—— Observed

No single shift in physical space
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Better environmental satellites
Proliferation of drone tech
Proliferation of Machine learning



Observational uncertainty

Here quantifies how well data
conforms to the adopted model
(2D Doppler shift)

Here applies to U & V, plus their
covariance

Should be quantified when
estimates are made

What do we do with it?
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Example: Observational uncertainty quantification — four
current estimates from one set of ‘images’
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Case study: remote sensed currents for floate==

=

trajectory estimates?

We have: ST
Point estimates Trajectory
of surface Handling? estimates with

currents with

Question: while we develop better instruments, could we be making
better informed decisions through more robust quantification and
propagation of uncertainty?



Handling observational uncertainty

Simulation: Noisy velocity field with uncertainty
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METHOD 1: Observational uncertainty
propagated directly into a decision-making

tool

* Poor model of reality

- Almost certainly not to recover
“truth”

 Method ignores covariance of “true”
flow

 Method ignores covariance of errors

Noisy 2D Field

1500 -

1250 -

1000 A

> 750 -

500 -

250 -

J N~ x : Noisy obs

r 7 O °609%6 . Uncertainty

Y ; ‘mmReal trajectory

= Estimated trajectory
Stochastic estimate

0 500 1000 1500 2000 2500

ABOVE: Time history of object trajectory




Case study: remote sensed currents for floate==

trajectory estimates?

We have: . .
Require: Require:
Point estimates _ D .. : Trai
of surface Uncertainty propagation escription o Uncertainty propagation rajectory

surface flow field estimates with

currents with :
with

Question: while we develop better instruments, could we be making
better informed decisions through more robust quantification and
propagation of uncertainty?



METHOD 2: Observational uncertainty propagated

via stochastic flow model

* True flow is a process with structure in
space and time

e Learn the flow structure from data
[machine learning]

* Weight observations by uncertainty [red
bars]

 Update best estimate AND belief in the
uncertainty [black lines]
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METHOD 2: Observational uncertainty propagated

via stochastic flow model
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Update best estimate AND belief in the uncertainty



Method 1: Direct propagation
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Roll-out: method & hardware

Study objective: Robust uncertainty quantification + propagation for wave-based current estimates at multiple scales

View ~200 km;
Res ~1 km; View ~1-2 km:; s I,

"

Res ~200m - 1 km; .

View ~100-400 m;

Study objective: Development of an affordable
Res ~¥100-400 m;

low-altitude aerial system

* Prototype developed
* Major field trials intended for Q1/Q2 2026



Summary

Despite age of wave-inversion methods, there are no operational systems to support decision
making

Modern machine learning methods + opening of hardware market present opportunities to
improve

-> The first X-band radars could barely detect boats
Handling of uncertainty key for decision making**, and a will be major focus of this work

Low altitude prototype developed, major field trial scheduled for 2026
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