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Outline of the talk

e Qur previous machine-learning approaches
« Convolutional neural network model
A Unet model for global SST predictions

e Zeya Li’s postdoc project — Unlocking the predictability of marine
heatwaves using Al techniques
« Transformer based machine learning




Convolutional Neural Network (CNN) model
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3-month SST and heat content anomaly maps

Issues: Feng et al. 2022
Need long training data ~1000s years Boschetti et al. 2023

Need to construct models for different target regions
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ORIGINAL RESEARCH article

Front. Clim., 28 September 2022 This article is part of the Research Topic
Sec. Climate, Ecology and People Advances in Marine Heatwave Interactions
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A deep learning model for forecasting
global monthly mean sea surface
temperature anomalies
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Input/output of the Unet-LSTM model

 ERAS5 SST and air temperature data (from 1958)

e Map SST (Ta_2m) onto [64,128] grid, (64°S to
62°N in 2° increments; 180°W to 180°E in 2.8125°
increments)

* Input data uses 12 monthly steps

* The model is trained to make 2-month
predictions, and recursively to predict the next 2

months
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Predictability limit of monthly sea SST
temperature in the global oceans
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Transformer Model Architecture

Transformer
(Vaswani et al. 2017)

Generative Pre-
trained Transformer
(GPT)

Natural language
processing (NLP)

Vision Swin — Shifted
Transformer (ViT) [ Windows Transformer
(Dosovitskiy et al. 2020) (Liu et al. 2021)



What is a transformer model?

A neural network that learns context

and thus meaning by tracking
relationships in sequential data (like
words in a sentence)

e Self-attention mechanism

e Establish multivariable
relationships in parallel regardless
of their spatial and temporal
distances
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Swin (shifted window) Transformer
Swin-Tunet — John Taylor

segmentation . _
classiﬁcation detection .. cla581ﬁcat10n
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Dosovitskiy et al. 2021

Limit self-attention computation to non-overlapping local

Liu et al. 2021 windows while also allowing for cross-window connection. @
Microsoft Asia



Transformer model set up for FOO (Zeya)

d [64,128] “global” grid
 Input variables: ERA5 SST and Ta 2m, EN4 upper ocean heat
content from 1940
O Input data’s time span: 3 months or 6 months
d Output variable: SST (surface temperature)
0 Model prediction: 3 months



RESU |tS Improvement against persistence

Correlation Difference (Model - Persistence)

Correlation (Target vs Predicted SST anomaly) Correlation Difference (Model - Persistence)
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Selected regions to evaluate predictions

Nino 3.4 — (170°W-120°W, 6°S-6°N)
(Eastern) 10D — (90°E-110°E, 10°S-0°)
Ningaloo Nino — (110°E-116°E, 32°S-22°S)

Great Barrier Reef — (146°E-156°E, 26°S-18°S)
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3-month lead prediction for Nino3.4 and WA
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Predictions for eastern
|IOD and GBR

2016 GBR marine heatwave

Forecast for 2016 Great Barrier Reef Marnne Heatwave
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Prominent
marine
heatwave
events in the

recent decade

| Northwest Atlantic
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Observed impacts attributed

to marine heatwaves for:
‘ Physical system
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Summary and future works

* “Generations of ML models”: CNN = Unet = Transformer

* The complex models may require less training data and show
prediction skills at short-term lead (compared to persistence)

* Training data — adding other variables such as surface winds

* Assess longer lead predictions

* High spatial resolution (regional)

* Higher temporal resolution (daily) to predict marine heatwaves
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