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“Because all decision making is ultimately
based on what will happen in the future,
either under the status quo or different
decision alternatives, environmental
decision-making ultimately depends on
forecasts.”

(Dietze et al. 2018)



Ability to use information about the future
depends on industry agility
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Future includes trends and variability (extremes)
Extreme events —a window to the future
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Impacts of climate extremes

Increasing ocean
temperatures
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Marine heatwaves — extreme events
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Significant

Bay of Bengal

15 May 2010

Driver: Possible links to
central Pacific El Nifo*
Impacts: Coral
bleaching in the
Andaman Sea

|

14 June 2003

Driver: Blocking high
and corresponding
terrestrial heatwave

Impacts: Mass mortality /

of rocky benthic
communities

17 January 1998

Driver: Atmospheric
teleconnections linked
to 1997/98 extreme El
Nino

Impacts: Extensive
coral bleaching

16 April 1995

Driver: Kelvin waves
triggered by tropical
Atlantic-wind
anomalies

Impacts: Severe
impacts on sardine and
other pelagic fish
populations

Northeast Pacific (The Blob)
8 January 2014

Driver: Persistent high pressure linked to
tropical-extratropical teleconnections

Impacts: Low ccean productivity; large
marine mortalities; toxic algal blooms

2 March 2011

Driver: Intensification of Leeuwin
Current and intense low pressure linked
to 2010/11 La Nina

Impacts: Destruction of kelp forests and
seagrass meadows; extensive coral
bleaching; widespread expansion of
tropical fish; collapse of crustacean and
shellfish fisheries

20 May 2012

Driver: Lxtensive high pressure linked
to jet-stream shift

Impacts: Fishery disruptions; species-
range shifts; low ocean productivity

24 December 2009

12 February 2016

Driver: Intensification
of East Australian
Current Extension

Impacts: Oyster
disease outbreaks;
mollusc mortalities;
salmon aquaculture
impacts

Driver: Intense high
pressure linked to
central Pacific El Nifo

Impacts: No reported
marine-species impacts

MHWSs have caused SB’s in dama

1997/98 El Nifio

25 December 1997

Driver: Coupled air-sea interactions

Impacts: Suppressed equatorial and
coastal productivity; fishery losses

[ 1 Moderate
B Strong
B Severe

8 February 2014

Driver: Persistent high
pressure linked to
Madden-Julian Oscillation
Impacts: No reported
marine-species impacts

B Extreme

es

Holbrook et al 2020
Smith et al 2021



How do MHWs form?

e Advection of
warm water
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Fraction of ocean

MHW trends — more, longer, stronger
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Forecasting: increases preparation window
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Forecasting of MHWs — how we do it

1. Forecasting techniques

* Expert model (experiential data)
* This year is El Nino — we expect “X”

e Statistical model (historical data)
* GAM/GLM
* Machine learning
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* Dynamical model (has the future in it)
* Ocean model
* Coupled models



1. Expert models — climate drivers such as ENSO

With the arrival of EINino,
prepare for stronger
marine heatwaves

Alistair J. Hobday, Michael T. Burrows, Karen Filbee-Dexter,
Neil J. Holbrook, Alex Sen Gupta, Dan A. Smale, Kathryn E. Smith,
Mads S. Thomsen & Thomas Wernberg

* February to June, 2023

EL NINO AND MARINE HEATWAVES

El Nifio is associated with an increased likelihood of marine heatwaves. This map shows where that risk is
strongest, by comparing the number of marine-heatwave days during past El Nifics with the number occurring
during neither an EL Nifo nor the cooler La Nina phase,

Percentage change in marine heatwave days
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1. Expert models

Analogue forecasts

Use combinations of
past conditions to
suggest the future

Temperature patterns - summer
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ine learning)

2. Statistical forecast models (mach

Why Machine Learning?

Boschetti et al (2023)
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Good at detecting predictive, informative patterns (especially on images)
Machine learning and traditional modelling can be successfully integrated

Can outperform physical models, even in some chaotic processes

1)
2)

3)
Project: Marine heatwaves in the Indo-Pacific region, their predictability and social-economic impacts



Sy What does Machine Learning do?
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Ningaloo Marine Heatwave Forecast
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Experimental forecasts — machine learning
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https://research.csiro.au/cor/research-domains/climate-impacts-adaptation/marine-heatwaves/forecasting-marine-heatwaves/australian-mhw-forecasts/

Boschetti, Hobday, Hartog, Feng, Zhang



3. Dynamical Forecasts

 Use ACCESS-S2 - BOM's seasonal
prediction system

* Computer models that predict future ‘ Il
Atmosphere &

ocean, land & atmospheric conditions
Land Initial

n3Doutto 6 months | il St
* |Includes winds, currents, rain, clouds,

radiation, sea ice & more
* Use latest observations

* Run 40 years of hindcasts to test how
well past events were predicted




Dynamical MHW
Forecasts

e Leadtime — 3 months

Monthly emn SST Marine Heatwave Category

Region: Tropics

Start: 15-Oct-2023

Period: Month 01-Jan-2024 to 31-Jan-2024
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https://research.csiro.au/cor/climate-impacts-adaptation/marine-heatwaves/dynamical-forecasting-of-marine-heatwaves/
https://research.csiro.au/cor/climate-impacts-adaptation/marine-heatwaves/dynamical-forecasting-of-marine-heatwaves/
https://research.csiro.au/cor/climate-impacts-adaptation/marine-heatwaves/dynamical-forecasting-of-marine-heatwaves/

MANAGING MARINE HEATWAVES

Periods of anomalously warm marine waters that can last from five days to more than a year require
appropriate preparation and response, involving researchers and coastal communities alike.
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Marine heatwave

(can last several months)
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*Temperature and time illustrated schematically. tUsually the 90th percentile.
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Establish baseline
Researchers can use historical
records and long-term monitoring.

Assess risk and plan responses
Identify vulnerable ecosystems,
species and industries and ways to
protect them.

Respond to forecasts
Shift agquaculture species to cooler
sites, for example.

. Adjust to cope

Close fisheries, reduce quotas,
cull pests.

Evaluate impacts
Assess recovery time
post-heatwave.

Collect new baseline data
On temperature, salinity, acidity,
oxygen and nutrients.

Reset quotas and activities
Targets must be adjusted for any
change in baseline.
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Climate change, variability and extremes will
challenge Australia this summer

June August-September November-February

Events predicted Events forecast Recovery phase

And we have never had such early-warning and preparation capability




Improving awareness

National Briefings for seafood industry hosted by FRDC
* Briefing1l-23June: https://www.youtube.com/watch?v=EhqalioYD4c

» Briefing 2 - 25 August: https://www.youtube.com/watch?v=-Fp9g35KbNw

» Briefing 3 - Friday 8 December 2-3pm (requests to Jamie.Alnutt@frdc.com)

1. System
manipulation

A=Y, The Bureau
of Meteorology %
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or visibility of 2. Regulatory
impacts environment

Fisheries Climate

Briefing #2: Sept-Nov 2023
Industry Agility
Claire Spillman', Alistair Hobday? under climate

1. Bureau of Meteorology, Melbourne
2. CSIRO Environment, Hobart

6. Social change &
expectations extremes

5. Leadership 4. Value and

and
influence obdtiti]

25 August 2023



https://www.youtube.com/watch?v=EhqaIioYD4c
https://www.youtube.com/watch?v=-Fp9g35KbNw

Marine Environmental Awareness Landscape
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Step 1: Preparation: Assess the risk

Action Example

Obtain baseline data using long-term monitoring programs and
historical studies (R, I)

Marine heatwave historical analyses — for example
www.marineheatwaves.org.

Revisit past marine heatwave effects in region of interest (I) In eastern Tasmania, an atlas of marine heatwaves can be used to revisit

past events and understand the frequency, intensity, duration and
impacts of past events

Estimate risk, intensity and duration of marine heatwaves during
El Nifio in region of interest (R)

Determine population susceptibility for different species (for example
Identify vulnerable ecological areas and populations, using shallow or sessile). Measure thermal thresholds for species/populations
vulnerability assessment approaches (R) survival. Knowledge from past events can inform expected impacts and
improve responses, as occurred for lobster fisheries in Maine, USA.

Determine commercial species and strains at risk under different marine

Identify vulnerable marine industries using vulnerability TR GRS

approaches (R, I)
Undertake supply chain analysis to identify weak links

Communities that have high exposure to loss of income from fishery
closures, tourism downturns, or opportunities for new businesses (such
as iconic species located in new areas) should contribute to risk
planning.

Identify vulnerable human populations (such as subsistence
fishers, communities reliant on single marine industry) using
socio-ecological vulnerability assessment (R, M)

AN
Code - researchers (R), industry (1), managers (M) and policy-makers in local or national governments (P). 92

Hobday et al (2023) — supp material ?


http://www.marineheatwaves.org/

Step 2: If risk exists, continue preparation —> Plan responses

Undertake consensus-building approaches to enable fast
action when needed, and included stakeholders with special
knowledge, such as Indigenous communities (I, M, P)

Explore different scenarios and possible actions such as relocation, fisheries
closures, and livelihood alternatives using participatory approaches.

Responses include changing marine resource use, building ecological

Formulate response plan, using decision support tools, and resilience, and reducing other stressors.

think about adaptive responses that do not have unwanted
side effects (I, M). Fisheries that have closed in the past due to marine heatwaves — for

example Western Australia — should develop response plans.

Based on mapping, aquaculture companies can prepare to shift populations
to cooler parts of their lease sites and fallow the warmer sites. Harvest
before the forecast event.

Prioritize high-risk areas and populations for response using
vulnerability mapping (R, |, P)

Develop skills in using existing ocean information websites, such as provided
by observing programs — for example Australia’s integrated marine
observing system (IMOS) or www.marineheatwaves.org

Develop early warning systems based on ecosystem
monitoring, ocean forecasting and available real-time
information. (R)

Deploy monitoring equipment around area of activity, such as gliders

AN
Code - researchers (R), industry (1), managers (M) and policy-makers in local or national governments (P). @2


http://www.marineheatwaves.org/

Summary

1. MHWs cause stress to the ocean and resource management
2. Prediction...seasonal MHW forecasting is now possible
3. Many ways to respond and prepare to MHWSs

4. Other extreme events will also be challenging — also need to prepare

Preparation window [ == ]
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