Australia's National Science Agency

Regional And Coastal Oceanography Experiences From Talisman Sabre 2023

Vanessa Hernaman¹, CSIRO Bluelink Team²

¹ CSIRO Environment, 107-121 Station St, Aspendale, VIC, 3195, vanessa.hernaman@csiro.au

² https://research.csiro.au/bluelink/about/people/

Talisman Sabre 2023

The Bluelink team established a range of bespoke prediction domains during the Talisman Sabre 2023 Defence exercise in July/August 2023. Here we highlight three areas of effort:

- 1. Importance of **accurate bathymetric** information for correctly predicting tide heights, currents and their timing in coastal regions
- 2. High-resolution forecast domains were established to deliver particle tracking predictions to support **search and rescue and recovery activities**
- 3. Developments in providing predictions of water levels, currents and waves for **nearshore and littoral decision making** were tested in a forecast "dev" environment, enabling feedback from end users to guide future modifications

ROAM-Ocean

Tidal height (3 days): **ROAM Tidegauge**

Original regional bathymetry

Updated bathymetry using Beaman 2020

Unplanned application in support of MRH-90 search

High-res forecast domains to deliver particle tracking predictions to support search & rescue and recovery

1) surface drift of debris (ROAM sfc vel + 1% wind)

NW drift trajectory from point of impact

Unplanned application in support of MRH-90 search

Predictions of sea floor currents to enable safe recovery activities

Time of slack tide often needed by end users e.g., divers, ROV operators

2) epi-benthic drift (bottom-most ROAM velocity)

Map and time series to identify time of slack tide

- 1. Develop/test/improve nearshore littoral modelling:
 - **a.** Littoral-scale: first deployment of wave-flow unstructured mesh model in automated forecast "dev" environment
 - **b. Surf zone**: first nesting within littoral scale/automating triggering of runs via ROAM API and delivering output to multiple decision makers
- 2. Seek feedback from larger end user community both of the above

Wave-flow coupling

Nonlinear interaction of ocean waves and currents is very important for wide range of nearshore applications

Waves can provide a strong contribution to water levels and littoral processes (e.g., contribute to storm surge & extreme water levels; improve storm surge simulations)

Currents influence the wave field (e.g., counter-currents can cause wave shoaling/steepening; strong currents + shallow water depth -> wave dissipation by whitecapping)

Unstructured mesh

- Many nearshore features require a higher resolution in specific and often discontinuous areas to be fully resolved
- Unstructured models can:
 - Represent complex coastlines and channels very easily
 - Precisely define areas of high resolution for specific features
 - Allow seamless resolution transition without the need for nesting

Three Spotter wave buoys were also deployed to support validation

<u>Mesh:</u>

Requirement: balance of resolution vs runtime (target of <30 mins runtime) for coupled hydrodynamics-wave 305,131 elements (faces); 162,298 nodes Mesh resolution:

- 3 focal areas: 100 m nearshore extending to 2 km at edge
- GBR: ~800 m over reefs extending to 2 km at edge
- Broad Sound: ~250 m nearshore extending to 2 km

Bathymetry:

GA 30m tiles (https://pid.geoscience.gov.au/dataset/ga/115066)

Forcing: Waves: AUSWAVE Winds & MSLP: ACCESS-G Tidal elev & velocities: TPXO Non-tidal elev: OceanMAPS

MPI Compute: Petrichor (CSIRO HPC) 256 CPUs 240GB mem ~27 min wall time

Simulations: 24-hr spin-up 72-hr forecast Run twice daily

<u>Validation:</u> Tide gauges Wave buoys Satellite altimeter (tuning runs)

Good performance even in the complex regions such as Broad Sound.

McEwen Islet

Elevation (m); Townsville

Wave validation: Significant wave height (Hs)

Bias generally 2-7 cm except at Hay Point

Waves & Current Animations

Mackay Mk4

lat = -21.06 [degrees_north], lon = 149.6 [degr...

In-situ deployment of wave buoys

Customizable dashboard developed to improve data viewing and local data hosting

Sofar Dashboard

Please enteryour Sofar API key

14 Julis Turis Thuis Setis Hunda Hedds Hild Julis August Thuis Setis Emeratorie unit

timestamp	significant/loveHeight	peakPeriod	meanPeriod	peakDirection	peakDirectionalS
2023-07-13 00:03:01+00:00	1.71	7.86	5.32	92.954	
2023-07-13 00:33:01+00:00	1.6	7.3	5.16	92.328	1
2023-07-13 05:03:01+00:00	L.65	6.82	5.24	94.671	्य
2023-07-13 01:33:01+00:00	1.64	7.86	5.28	89.803	
2023-07-13 02:03:01+00:00	1.54	7.80	5.26	85.748	1
2023-07-13 02:33:01+00:00	1.45	7.86	5.12	83.394	3
2023-07-13-03-03-01+00-00	1.45	7.86	5.06	76.114	1
2023-07-13-03:33:05+00:00	1.4	7.86	5.08	79.042	
2023-07-13 04:03:01+00:00	1.41	7.3	5.14	78.964	1
2023-07-13 04:33:01+00:00	1.4	7.86	4.96	72.626	1

Download data

Both the operational guidelines and the dashboard were used and evaluated during the activity

Figure on bottom right indicates drag analysis during ~6 week operational deployments

- Wave group resolving hydrodynamics model for beach processes
- Transforms ocean waves up to the beach-face
- Applied for regions up to O(1) km length of coastline with a resolution of O(10) m
- Due to high resolution, global bathymetry datasets insufficient
- User supplied bathymetry is necessary
- Provides predictions of waves, currents and water levels in the nearshore
- TS2023 first nesting within littoral scale/automating triggering of runs via ROAM API and delivering output to multiple decision makers

Differences in model runs

LADS 2001

MSI = Modified Surf Index

Differences in model runs

forced with global model data

forced with SCHISM-WWMIII

GBR30

Iterative cycle had rapid turnaround of days; demonstrated under pressure during TS2023

Thank you

Environment

Dr Vanessa Hernaman

Senior Research Scientist

+61 2 9123 4567 Vanessa.hernaman@csiro.au csiro.au/lorem

CSIRO Blueline Team https://research.csiro.au/blu elink/about/people/

Australia's National Science Agency