The surface currents that matter to offshore infrastructure

Forum for Operational Oceanography: Waves and Currents Session Matt Rayson 22nd November 2021

Oceans Graduate School University of Western Australia

ARC Research Hub for Offshore Floating Facilities

ARC Research Hub for Transforming energy Infrastructure through Digital Engineering

Industrial Transformation Research Hub for Offshore Floating Facilities

Hub Director:

Shell EMI Chair of

Offshore Engineering

Prof. Phil Watson

Hub Manager: Dr Andrew Grime

- Aim: to address the critical engineering challenges associated with Australia's next generation of offshore oil and gas projects
- 15 academics (UWA, WSU), 5 post-docs, 15 PhDs
- ARC contribution of \$5M over 5 years (2016 2021), matched by industry
 - → Oceanography (metocean) focus: <u>Characterisation</u> of nonlinear internal waves and boundary turbulence in the offshore environment

<u>Transforming energy Infrastructure</u> through <u>Digital Engineering Research Hub</u>

Development of new science and technology through *digital engineering* to optimise the management of offshore energy infrastructure – thereby making this activity cheaper and yet more reliable.

Digital Engineering is the creation, use and embedment of data in engineering.

Oceanography focus: <u>Prediction</u> of nonlinear internal waves and submesoscale eddies using "traditional" physical models and new "data science" methods

New science and technologies to transform operation of offshore energy infrastructure agile decision-making | improved safety | increased efficiency long-term reliability | lower environmental risk What type currents matter to offshore infrastructure?

Bluelink Reanalysis (v2020), 10 km resolution

SUNTANS Nonhydrostatic Shelf-Scale (0.125 km resolution)

Prediction by combining physical models with data*

"Data-driven" methods:

10 km

when there is too much uncertainty in our model inputs

Satellite-tracked drifter velocity vectors (blue) and reconstructed using *optimal interpolation surface currents (grey)

Data acknowledgement: UWA Shell Chair (Prof. P. Watson), UWA Coastal Oceanography (Prof. C. Pattiaratchi)

*optimal interpolation aka:

- Gaussian Process Regression
- Machine Learning
- Surface Fitting...

 $\begin{smallmatrix} 05-31 & 06 \\ 05-31 & 05-31 & 05-31 & 12 \\ 05-31 & 05-31 & 05-31 & 14 \\ 05-31 & 05-31 & 05-31 & 05-31 & 20 \\ 05-31 & 05-31 & 05-31 & 20 \\ 05-31 & 05-31 & 06-01 & 02 \\ 06-$

Transforming energy Infrastructure through Digital Engineering Research Hub

