

Forum for Operational Oceanography, Melbourne 2019

PPA Metocean Network

~1000km of WA Coast Line

1 1

No.

Port Hedland

- 8 Tide Gauges
- 7 Meteorological Stations
- 3 AWACs
 - 2 Wave Rider Buoys

Dampier

- **3 Tide Gauges**
- **2** Meteorological Stations
- 1 AWAC
- 1 Wave Rider Buoy

Ashburton

- **3 Tide Gauges**
- **3** Meteorological Stations
- 1 AWAC
- 1 Wave Rider Buoy

Channel Risk & Optimisation Project Port of Port Hedland, Western Australia

Inner Harbour with Swing Basin

Berths:

- 16 Cape Size
- 1 Panamax Size
- 2 General Cargo

Single Entry & Exit <u>Tidal</u> restricted 42km Channel

Annually, ~3000 Cape Size Bulk Carriers Departures,

10 Bulk Carriers departures per day

On average > \$100M export per day

Largest bulk export port in the world - approx. 30% of global seaborne trade

Dredging Methodology

- Stage 1-0 & 2-1:
 - Dredging of as much material with a TSHD and disposal in Spoil Grounds

- Stage 2-2:
 - Dredging of remaining (hard) materials to achieve design and relocation by Hopper Barges into Spoil Grounds

Project Execution:

Stage 2-2: April 2019 to August 2019

Cutter Suction Dredge (CSD) 'Niccolò Machiavelli' 7,000KW Split Hopper Barges , 3500 m³

Project Risks

Stage 2-2:

- Creation of 'High Spots/Obstructions' during dredging works
- Shipping Traffic > Excessive Project Costs
- Inclement Sea State > Excessive Project Costs

Project Execution:

Stage 2-2 Project Risks

Project Risks (Mitigation)

Stage 2-2:

- Creation of 'High Spots/Obstructions' during dredging works
- Channel Evacuation by CSD versus Loss of efficiency > Excessive Project Costs

NICCOLÒ MACHIAVELLI

Length o.a.	138.5 m 26.0 m	
Breadth		
Draught	5.50 m	
Dredging depth	35 m	
Suction pipe diameter	900 mm	
Discharge pipe diameter	900 mm	
Barge loading pipe diameter	900 mm	
Submerged pump power	4,250 kW	
Inboard pump power	2 x 5,000 kW	
Cutter power	7,000 kW	
Propulsion power	2 x 3,500 kW	
Total installed diesel power	23,520 kW	
Speed	13 kn	
Accommodation	46	
Built in	2011	

Project Execution: Stage 2-2: April 2019 to August 2019

COSCO SHIPPING

Project Execution: Stage 2-2 Project Risks

Project Risks (Mitigation)

Stage 2-2:

 Inclement Sea State > Excessive Project Costs

Introducing the "Sea State Verification System" (SSVS)

Project Risks: Inclement Sea State, Contract Parameters

Contractual Parameters:

- Compensation Entitlement for 'Inclement Sea State'
- <u>Contractor's provided Sea Sate limitations</u>
- Superintendent verification applying 'Forecasts' & 'Measurements'
- 'Measurements' taken from <u>PPA's</u> Metocean Instruments

Vessel Operating Parameters

The Contractor may be entitled to a Stand By claim when the Contractor's vessels have to cease normal operations for a period of time due to inclement sea state conditions.

CSD Spread:

Acting reasonably, the Superintendent shall verify a stand by claim for the CSD Spread for incientent sea state conditions taking in consideration the Contractor's provided sea state limitations indicated by the green graph in the figure below, sea state conditions as forecasted by the ARGOSS System and the sea state conditions data as generated by PPA's metocean instruments near Beacon C2, Beacon 15 and Beacon 16. The Contactor shall provide the Superintendent with copies of all ARGOSS generated predictions during the execution of the Works.

Green Graph: CSD limiting sea state conditions

Project Risks: Inclement Sea State, Contract Parameters

In determining the *Contractor's* claim for a period of stand by for *inclement sea state*, the *Superintendent* shall take into consideration the total wave spectrum as determined from the raw data generated by the PPA Metocean instruments and application of the formula Tp=1.17xTm whereby:

Tp = Peak wave period corresponding with the wave period with the highest energy

Hs = Significant Wave Height

Project Risks: Inclement Sea State, Verification

Sea State Verification System:

- 1. <u>Template</u> containing:
 - 'Vessel Operating (Contractual) Parameters'
 - Data Entry
 - Evaluation Graph

	OMC
	TERNATIONAL
Safer Shipping	Smarter Ports

L	1 :	D	1 1 4 4		1
				J	К
				Green line	
				Tm	Fs
				1	
				2	
				3	
				4	-
				5	
				6	
				7	
				8	
				9	
				10	
				11	
				12	
				13	
					-
				14	_
				15	

Project Risks: Inclement Sea State, Verification

Search DUKC WRB	O Curren	nt Folder 🔹	Wed 9/10/2019 11:20 PM
DUKC WRB	By Date	T D	DUKC.waveReport@pilbaraports.com.au
▲ Yesterday			3 hourly Wave reports for date 20191009_1800
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_1800 Wed 1	11:20 PM	Schlack; Jodie Leahy 0191009_1800_B15WRB_3hourly.csv _ 20191009_1800_C02WRB_3hourly.csv KB 1 KB
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_1500 Wed	1 8:20 PM	
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_1200 Wed	1 5:20 PM	y Wave reports for date 20191009_1800 Sea State Verification System: 2. PPA's WRB Data:
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_0900 Wed	ີພ I 2:20 PM	 Automated Via Email: Every 3 hours (Contractual Parameter) Every 24 hours (Compilation 0:00>23:59 hrs)
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_0600 Wed 1	11:20 AM	
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_0300 Wed	8:20 AM	
DUKC.waveReport@pilbara Daily Wave reports for date 201910 Daily Wave reports for date 201910	08 Wed	8:00 AM	Wave Rider Buoys
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91009_0000 Wed	5:20 AM	
DUKC.waveReport@pilbara 3 hourly Wave reports for date 201 3 hourly Wave reports for date 201	91008_2100 Wed	0 2:20 AM	

Project Risks: Inclement Sea State, Verification

Sea State Verification System: Operationally

Sea State Verification System: Operationally

Vessel Operational (Contract) Parameters

Vessel Operational (Modified) Parameters

Sea State Verification System: Operationally

Vessel Operational (Contract) Parameters

Vessel Operational (Modified) Parameters

Sea State Verification System Summary:

- System Aims:
 - Create a 'Level Playing Field' at a Project's Tender Stage
 - Protect against spurious inclement sea state claims
 - Claim Verification' by non-experienced supervisors
- System development:
 - More Vessel Parameters?
 - More Sea State Data input?
 - Contractual expertise!
- Contractors need to establish what the limiting sea state parameters for their vessels are..

Questions or Comments?

October 2019, at the **Pullman Albert Park Melbourne**. We have 100 registered attendees but still room for some more. So don't miss out.

The program has two central themes:

- 1. **Opportunities** for operational oceanography to drive the development of Australian marine industries
- Risks to Australian marine industries and the role of operational oceanography in helping to manage them