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Many sectors rely on accurate operational wave forecasts:

» Offshore industries, e.g. side-by-side offloading, port departures, personnel
transfers.

» Marine/public safety

» Coastal hazards and management




WESTERN
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Waves, particularly swell, can cause unsafe working conditions and damage to
equipment.

Gap resonance example during side-to-side operations
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Modern wave forecasting

A vast majority of operational wave forecasts rely on “third-generation” spectral
(phase-averaged) wave models run over global and/or continental/ocean basin
scales.
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Limitations of spectral wave forecast THE UNIVERSITY OF
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Despite mostly producing very good forecasts, spectral wave models (e.g.
Wavewatch Ill) have a number of innate limitations based on their numerics or
physics, for example:

« Wind wave growth is mostly based on empirical parameterizations.

» They crudely handle redistribution of energy across the spectrum.

* Rely on wind fields from atmospheric models.

» Have relatively coarse resolution in space, frequency, and direction.
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Can machine learning be used to
improve operational wave forecasts?
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We examine the feasibility of using machine learning algorithms to bias-correct

BOM AUSWAVE forecast.

» Machine learning is used to bias-correct, not make the forecast. i.e. a “grey

box” not a “black box”.

Method applied as a pilot
study using BOM forecasts
and observations from WA
Department of Transport
wave buoys at Cape
Naturalist, Rottnest Island,
Jurien Bay.
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A Recurrent Neural Network (RNN) was trained using 18 months of:
« BOM AUSWAVE-R 72 hour forecasts (1 hour interval updated every 12 hours)
» Hourly bulk statistics from the wave buoys (some missing data)

A random 20% of the training data set was withheld for performance evaluation
(data not used for training).

The data from all locations was combined to maximize the training data set
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Recurrent Neural Networks are modified versions of traditional neural
networks and are used for data sets where sequences are important, e.g.

speech, handwriting, time series.
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For the 150 randomly selected 72 hour forecast periods, the ML algorithm
reduced the forecast RMSE by 19% for significant wave height and 38% for
peak period.
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Preliminary spectral results WESTERN
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The RNN model was also trained with the forecasted and observed 1D spectra
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» This pilot study has demonstrated that machine learning can identify and
correct errors in spectral wave model forecasts using a limited (18
month) training data set.

» For this study all locations were combined to increase the training data
set, the forecast improvements suggest:
» Errors in the forecast are regionally coherent (not so surprising
given dominance of Southern Ocean swell) and ML forecast
corrections may be useful over a broader region.

« The drawback of the ML approach is that you don’t really know what the
ML model is doing!
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Ongoing/future work:
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Extending results to 2D spectra
Investigating sensitivity to BOM model updates.
Putting confidence intervals on ML forecast
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