

Innovative Wave Transformation Algorithm for Improved Short-term Wave Forecasting

Forum for Operational Oceanography Conference 2019

Sean Garber, Matthew Zed, Jan Flynn, David Taylor, Jarrod Dent

16 October 2019

Acknowledgements

 Woodside Energy Limited funded the development of the work presented here and the metocean team at Woodside provided invaluable technical input and review during all phases of development.

Presentation Outline

- Project Background
- Offshore Buoy Network
- Recap of the Spectral Wave Transformation Method
- Advances to the Transformation Method
- Amalgamation of Multiple Transformations
- Nearshore Swell Forecasting Performance
- Operational Implementation

Development Background

- Requirement for accurate short-term operational forecasts of swell conditions
- Availability of high frequency real-time measurements with relatively extensive spatial coverage
- Requirement to integrate one or any combination of offshore buoys and provide redundancy to the forecasts
- Requirement to produce directional wave spectra at nearshore locations

Offshore Buoy Network

- Five offshore buoys
- Seasonal configuration
- Distances from Mermaid Sound between
 - ~100 to 350km; or

19

1.5 to 9+ hrs propagation time

Recap of the Wave Transformation Method

- Spectral Wave Transformation
 - Data in: $S(f,\theta)$
 - Transfer: $\Delta S(f, \theta)_{i, j}$
 - Data out: $\sum [\Delta S_{i,j} \times S_{i,j}] = S_{inshore}(f,\theta)$

- Equivalent validation to highresolution 3rd generation spectral wave model
- Extensively applied

B.

19

Schematic of Spectral Transformation

Inshore Response Spectra

NSW Nearshore Wave Forecast

http://www.forecast.waves.nsw.gov.au

All times displayed are in AEST (UTC+10)

B.

19

Advances to the Transformation Method Propagation Time

- Frequency dependent swell propagation needs to be taken into account to ensure correct phasing of the forecast
- Non-stationary wave scheme with 'short peak' time series boundary conditions
- Creates a two stage transformation
 - 1. Propagate forward in time
 - 2. Apply energy transform

Advances to the Transformation Method Tidal Hydrodynamics

- Clear tidal signal present in the measured inshore swell condition
- Requires inclusion of water level and tidal currents
- Important for long period swell propagating across shallow water

Advances to the Transformation Method Tidal Hydrodynamics

- Clear tidal signal present in the measured inshore swell condition
- Requires inclusion of water level and tidal currents
- Important for long period swell propagating across shallow water

Advances to the Transformation Method Matrix Boundary Conditions

 Optimised through iterative solver

B.

Performance of Transformation Method

- Good validation for long period low magnitude swell (ranging Hs 0.1 to 0.4m inshore)
- Magnitudes and phasing of swell peaks well captured
- Some underestimation of 'trailing' swell as peak period drops through 15s

Validation Metrics: Mermaid Sound – Swell (<0.0833Hz) – 2 winter seasons

Forecast	Error Statistics					
	MS	Bias	MAE	RMSE	R	
1 hour	0.88	-0.01	0.02	0.02	0.84	
2 hour	0.88	-0.01	0.02	0.02	0.84	
3 hour	0.85	-0.01	0.02	0.02	0.76	
4 hour	0.82	-0.01	0.02	0.03	0.70	
5 hour	0.82	-0.01	0.02	0.03	0.71	
6 hour	0.82	-0.01	0.02	0.03	0.71	

Combining Multiple Transformations

Considerations:

- Each buoy is well suited to capture different directional range and forecast horizon
- Want to ensure best performing transformations are contributing to the forecast
- Allow for redundancy

Combining Multiple Transformations

• Approach:

- Complete transformation in directional sectors
- Valid for NWS as winter swells are directionally unique 99% of swell energy arrives from directions

Combining Multiple Transformations

- Approach:
 - Develop intermediate transformations to extend observed record at more inshore buoys
 - Hierarchy of transformations in each sector (provides redundancy)
 - Sum of transformations from each directional sector

Performance of Multiple Forecast Combination

- Very good validation for long period low magnitude swell (ranging Hs 0.1 to 0.4m inshore)
- Magnitudes and phasing of swell peaks well captured
- Reasonably replicates the inshore directional spectrum

Validation Metrics: Mermaid Sound – Swell (<0.0833Hz) – 2 winter seasons

Forecast	Error Statistics					
	MS	Bias	MAE	RMSE	R	
1 hour	0.91	-0.01	0.02	0.03	0.88	
2 hour	0.91	-0.01	0.02	0.03	0.88	
3 hour	0.91	-0.01	0.02	0.03	0.88	
4 hour	0.92	-0.01	0.02	0.03	0.88	
5 hour	0.92	-0.01	0.02	0.03	0.88	
6 hour	0.92	-0.01	0.02	0.03	0.88	

Operational Implementation

- Equivalent validation to highresolution 3rd generation spectral wave model in fraction of the time
- Availability of real-time nearshore measurements allows bias correction to be calculated in realtime:
 - Simple bias correction using t=0hr forecast
 - Multiple linear regression of comparisons over previous 6 hours

Forecast	Error Statistics					
	MS	Bias	MAE	RMSE	R	
1 hour	0.95	-0.01	0.02	0.02	0.89	
2 hour	0.94	-0.01	0.02	0.02	0.88	
3 hour	0.94	-0.01	0.02	0.02	0.84	
4 hour	0.94	-0.01	0.02	0.03	0.81	
5 hour	0.94	-0.01	0.02	0.03	0.80	
6 hour	0.94	-0.01	0.02	0.03	0.80	

Conclusions

- Spectral transfer method has proven applicable for short-term forecasting of nearshore swell conditions across large distances with the following advancements:
 - Inclusion of swell propagation time
 - Inclusion of tidal hydrodynamics
- Able to forecast multiple swell modes for +1 hr to +6 hr forecast horizon
- Fast computation time allows implementation within a real-time monitoring network for regular forecast updates
- Availability of nearshore real-time data provides basis for bias correction to be calculated in real-time to improve accuracy of the physics based transformation

Thank You

Sean Garber | Associate Principal Coasts, Oceans & Ports t +61 2 8278 7266 | m 0404 203 740 sgarber@baird.com | baird.com

