Evaluation of a machine learning framework to forecast storm surge

Daryl Metters Coastal Impacts Unit Department of Environment and Science

The Coastal Impacts: what we do

- The primary Queensland Government agency involved in the management of extreme storm-tide events in Queensland
- Operate 36 storm-tide gauges and 14 tide gauges along the Queensland coast. These measure the magnitude of stormtide during cyclonic events for the use by disaster management groups for evacuation purposes
- During severe events we Liaise with the Bureau of Meteorology to confirm information in storm-tide advice (warnings) and provide technical advice on storm-tide to local, district and state groups

What is Storm Tide ?

What is Storm Tide ?

The **storm tide** is the total water level obtained by adding the **storm surge** and **wave setup** to the height of the **astronomical tide**

What is Storm Surge?

Storm Surge = Actual - Tide Prediction

Storm-tide data

- We present and distribute the actual storm-tide data along with the tide prediction and residual in near real time
- This process predicts or forecasts the tide component only and not the surge level
- The surge level is calculated in near real time as the levels are reported by each STG
- Storm Surge = actual (measured) level tide prediction.

Storm Surge forecasting

- Many methods developed over recent years to help forecast the storm surge level
- Most make use of the linear relationship between the driving parameter(s) and the actual water level recorded
- Successful methods used in modern times are based on numerical modelling of the physical driving forces responsible for the surge levels
- These modelling efforts are expensive to maintain due to the large computing power needed to operate the models

Storm Surge forecast

Important for planning:

- 1. Evacuation during severe events
- 2. Recreational activities
- 3. Commercial transport
- 4. Scientific marine activities

The Project

Storm-tide forecasting using Machine Learning

A proof of concept

- Transfer of knowledge and understanding of machine learning principles to DES staff
- To establish and test various machine learning models, and use those machine learning models to forecast storm-tide levels
- Formulate an understanding of the effectiveness of machine learning in forecasting storm-tide

Machine Learning

- A type of artificial intelligence
- Enables the ability to "learn" with data, without being explicitly programmed
- Explores the study and construction of algorithms that can learn from and make predictions on data
- This overcomes following strictly static program instructions by making data-driven predictions or decisions, through building a model from sample inputs
- Employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or unfeasible.

Computing and code

- Python library: Scikit-learn
- Anaconda 3
- Used CPU and memory
- Amazon AWS High Performance Computing facilities
 72 cores of virtual CPUs and 144 GB memory

Data preparation

- Storm tide, wind and pressure data checked for errors and gaps
- Filtered for out of range values: if out of range then removed
- Single missing points given the average of the two points before and after, larger gaps were considered missing data and removed.

Model Training, Testing and Forecasting

- The prepared dataset was divided into training and testing datasets
- 2/3 training : to improve model accuracy
- 1/3 testing : to check model accuracy
- The ML model output is then used to forecast 72 hours beyond the training and testing datasets

Input Data

- Clump Point Storm Tide Gauge
- Storm Tide: one minute
- Atmospheric pressure: one minute
- Wind speed : 10 minute
- Wind direction: 10 minute
- Tide predictions : 10 minute

Machine Learning

Two general types of machine learning models utilised (1) Feature based models:

- Decision Tree
- Neural Networks
- Linear
- k-Nearest Neighbour (kNN)
- Support Vector Machine (SVM) and
- Random Forest

(2) Time series models: ARIMA and Prophet.

Machine Learning Methods

As the eight models were developed, special effort was made to train DES staff on how to conceptualise and run the models in Python

Machine Learning Methods

As the eight models were developed, special effort was made to train DES staff on how to conceptualise and run the models in Python

Model approach's

- V1 Modelled weather approach
 - Storm Tide
 - **Training/testing Input**: storm tide, atmospheric pressure, wind speed and direction, tide predictions
 - Forecast input: BoM Access-G modelled weather forecast
 - Storm Surge
 - **Training/testing Input**: residual, atmospheric pressure, wind speed and direction
 - Forecast input: BoM Access-G modelled weather forecast
- V2 Dataset shift approach
- V3 Modelled weather forecast approach using the time series models
- V2 and V3 approach's not taken to forecast phase

- Metrics used:
 - 1. Run time: Linux command 'time' used to generate real time: wall clock time time from start to finish of the call.
 - 2. Mean Square error
 - 3. Correlation coefficients

Model Run Time

Forecast type	Model	Real time
Storm Tide	Decision Tree	0m 9.5s
	Neural Network	128m 7.9s
	Linear Model	0m 8.7s
	KNN	0m 25.8s
	Random Forest	14m 35.8s
	SVR	31m 23.9s
Residual	Decision Tree	0m 12.0s
	Neural Network	132m 45.7s
	Linear Model	0m 8.6s
	KNN	0m 56.8s
	Random Forest	14m 50.4s
	SVR	31m 29.1s

Model Run Time

Forecast type	Model	Real time
Storm Tide	Decision Tree	0m 9.5s
	Neural Network	128m 7.9s
	Linear Model	0m 8.7s
	KNN	0m 25.8s
	Random Forest	14m 35.8s
	SVR	31m 23.9s
Residual	Decision Tree	0m 12.0s
	Neural Network	132m 45.7s
	Linear Model	0m 8.6s
	KNN	0m 56.8s
	Random Forest	14m 50.4s
	SVR	31m 29.1s

Model Run Time

Forecast type	Model	Real time
Storm Tide	Decision Tree	0m 9.5s
	Neural Network	128m 7.9s
	Linear Model	0m 8.7s
	KNN	0m 25.8s
	Random Forest	14m 35.8s
	SVR	31m 23.9s
Residual	Decision Tree	0m 12.0s
	Neural Network	132m 45.7s
	Linear Model	0m 8.6s
	KNN	0m 56.8s
	Random Forest	14m 50.4s
	SVR	31m 29.1s

Storm Tide with tide predictions

Model	Mean Squared error	Correlation coefficient
KNN	0.010	0.988
SVR	0.007	0.990
Decision Tree	0.008	0.990
Random Forest	0.007	0.991
Linear Model	0.007	0.990
Neural Network	0.007	0.990

High correlations All models performed equally well

Storm Tide without tide predictions

Model	Mean Squared error	Correlation coefficient
KNN	0.400	0.057
SVR	0.374	0.069
Decision Tree	0.374	0.111
Random Forest	0.374	0.106
Linear Model	0.377	0.019
Neural Network	0.378	-0.014

Very low correlation All models performed poorly

Storm Surge (Residual)

Model	1 month	3 months	6 months	12 months	average
KNN	0.264	0.288	0.421	0.398	0.343
SVR	0.377	0.398	0.568	0.403	0.437
Decision Tree	0.307	0.326	0.400	0.425	0.365
Random Forest	0.375	0.383	0.610	0.543	0.478
Linear Model	0.400	0.397	0.383	0.343	0.381
Neural Network	0.400	0.393	0.514	0.512	0.455
average	0.354	0.364	0.483	0.437	

Moderate correlation

Storm Surge (Residual)

Model	1 month	3 months	6 months	12 months	average
KNN	0.264	0.288	0.421	0.398	0.343
SVR	0.377	0.398	0.568	0.403	0.437
Decision Tree	0.307	0.326	0.400	0.425	0.365
Random Forest	0.375	0.383	0.610	0.543	0.478
Linear Model	0.400	0.397	0.383	0.343	0.381
Neural Network	0.400	0.393	0.514	0.512	0.455
average	0.354	0.364	0.483	0.437	

Moderate correlation

Increasing correlation with increase in data length

Storm Surge (Residual)

Model	1 month	3 months	6 months	12 months	average
KNN	0.264	0.288	0.421	0.398	0.343
SVR	0.377	0.398	0.568	0.403	0.437
Decision Tree	0.307	0.326	0.400	0.425	0.365
Random Forest	0.375	0.383	0.610	0.543	0.478
Linear Model	0.400	0.397	0.383	0.343	0.381
Neural Network	0.400	0.393	0.514	0.512	0.455
average	0.354	0.364	0.483	0.437	

Moderate correlation

Increasing correlation with increase in data length Random Forest best performing model

Storm Surge (Residual)

Model	1 month	3 months	6 months	12 months	average
KNN	0.264	0.288	0.421	0.398	0.343
SVR	0.377	0.398	0.568	0.403	0.437
Decision Tree	0.307	0.326	0.400	0.425	0.365
Random Forest	0.375	0.383	0.610	0.543	0.478
Linear Model	0.400	0.397	0.383	0.343	0.381
Neural Network	0.400	0.393	0.514	0.512	0.455
average	0.354	0.364	0.483	0.437	

Moderate correlation

Increasing correlation with increase in data length Random Forest and Neural Network best performing

Time series models

ARIMA model	Mean Squared error	Correlation Coefficient
Storm Tide	0.438	-0.02
Wind Speed	36.739	0.09
Wind Direction	6438.297	0.13
Air Pressure	67.119	0.51

Prophet model	Mean Squared error	Correlation Coefficient
Storm Tide	0.014	0.34
Wind Speed	86.645	0.13
Wind Direction	8958.065	0.41
Air Pressure	54.353	0.59

Very low correlation for Storm Tide, and wind speed and direction

Time series models

ARIMA model	Mean Squared error	Correlation Coefficient
Storm Tide	0.438	-0.02
Wind Speed	36.739	0.09
Wind Direction	6438.297	0.13
Air Pressure	67.119	0.51

Prophet model	Mean Squared error	Correlation Coefficient
Storm Tide	0.014	0.34
Wind Speed	86.645	0.13
Wind Direction	8958.065	0.41
Air Pressure	54.353	0.59

Very low correlation for Storm Tide, and wind speed and direction but moderate correlation for pressure

Model performance forecasting phase Storm Tide

Storm Tide

Model	Forecast Storm Tide vs actual Storm
KNN	0.996
SVR	0.999
Decision Tree	0.999
Random Forest	0.999
Linear Model	0.999
Neural Network	0.999

High correlations: better than testing phase

Storm Surge (residual)

Storm Surge (residual)

Storm Surge (residual)

Model	Forecast Storm Tide vs actual Storm	Forecast residual vs residual
KNN	0.996	0.199
SVR	0.999	-0.021
Decision Tree	0.999	-0.081
Random Forest	0.999	-0.052
Linear Model	0.999	-0.278
Neural Network	0.999	0.154

Model performance Summary

- Modelling Storm Tide gave best testing phase performance over all models
 - Due to inclusion of tide predictions
- Storm Tide forecast gave best performance over all models
 - Due to inclusion of tide predictions
- Modelling of Storm Surge (residual) gave moderate testing phase correlations
- The Storm Surge forecast gave poor results

Next phase

- Funding to continue with the project has ceased
- We are setting up a cluster of high-end PC's to take the project to the next phase
- Will be looking at the issues with the Storm Surge forecast
- Possible underlying problems with the Storm Surge forecast are:
 - Short learning data-set
 - Mismatch between the frequency of the input data and the BoM ACCESS-G model. Inputs= 10 minute, ACCESS-G = one hour
 - Offset between forecast and actual Storm Surge
 - Low occurrence of Storm Surge in the input data

Thank you

Daryl Metters Coastal Impacts Unit Queensland Department of Environment and Science

