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Our Definition: Using probability and data to reconcile real physical systems
with mathematical approximations
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Soliton: a non-linear internal oceanic wave generated by tidal forcing over
topography.

Interest for ocean engineering and oceanography because:
» Important driver of extreme currents.

* Induce large stress on offshore infrastructure.

» Influence dynamic position systems during operations.

» Drive sediment suspension

Motivating Industrial Question:

What will be a plausible range of maximum amplitudes
Induced by a given soliton.
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Model the amplitude, A(x, t), using the variable-coefficient KdV equation:

aa—A + c(x) 6_A + a(x)Aa—A +p (x) ZCQ(X) gg =0 f
Initial Condltlons (unknown): —

- Density Stratification

- Initial wave amplitude

Important to acknowledge:

- Inputs are uncertain T T ey T
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- KdV is a simplification/approximation of reality
- Even if exact, the solution is still approximate because it is intractable.
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Uncertainty and probability:

* Any form of approximation induces uncertainty

» Probability theory provides a mathematical description of uncertainty.
« Basic to all decision making under uncertainty.

“...the theory of probabilities is basically

Just common sense reduced to calculus;
it makes one appreciate with exactness
that which accurate minds feel with a
sort of instinct, often without being able
to account for it.” Pierre Simon Laplace
(1749-1827)
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A coherent probabilistic fusion of data and scientific knowledge

new data prior knowledge
. $ ""_.f"‘{ '17:':'*"_—‘.7 S5
p(y16) p(0) | B

p(@1y) = p(y]6)p(®)

posterior « likelihood < prior

We build a model for the temporal evolution of density stratification, given data
observed on the North West Shelf.
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KdV Inputs: density stratification S
p(2) =L, + B (tanh(ﬁz -Z)+ Bltanh(%)) 2. Fit w/ uncertainty 3. Parametric inference
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Manderson, A., Rayson, M., Cripps, E., et al. (2019)

““Uncertainty quantification of density and stratification estimates with implications for predicting ocean dynamics”.
Journal of Atmospheric and Oceanic Technology, 36(7), pp 1313--1330
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Temporal evolution: embed parametric in hierarchical model
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Temporal evolution of predictive distribution of density profile characterists
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Temporal evolution of the predictive distribution of isopycnals
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Physical model: The Korteweq-de Vries equation for continuously stratified fluids:
03A c 0Q

0A 0A 0A
E-I_ C(x)a+a(X)Aa+ﬁ(X)ﬁ+za =0

Uncertain Inputs:

a(x) and B(x) require density profile, p:(z), z = depth vector
- Initial condition A(x, 0) requires initial wave amplitude, a,
Statistical models for input uncertainty: p(p;(z)) and p(ag;)

e.g.,
- Yt=P¢ T €,

Combining the physics, statistics and computing for industrial impact

p(Ane|Datas, KdV): the predictive distribution of A4,,;, integrating out inputs
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Predictive distribution of maximum amplitude at a given time.
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Computationally demanding: Parallel, distributed and cloud computing

Software development: Necessary for industrial uptake
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To achieve the previous slides needs input from a wide range of expertise:
Oceanographers, statisticians, computer engineers, engineers.

Manderson Rayson Barlow Girolami
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Bayesian Analysis of Computer Code Output

Denote by y = f(x : #) as the simulated output of a computer
model that relies on inputs x and tuning parameters, 6.

@ Uncertainty Analysis: propagate p(x) through f(x : 0)

@ Inversion: given observations, z, identify optimal values of &
via its posterior distribution: p(8@|x, y, z)

@ Numeric Solver Uncertainty Different solvers/grids etc, can
yield different approximate evaluations of the model.
Probability can turn the problem into one of statistical
inference.

@ Sensitivity Analysis: determines which inputs are most
influential on simulator output.



