

Piers Larcombe (RPS MetOcean, Perth) Michael Garvey (Shell Australia, Perth)

Complex near-bed sedimentary dynamics in seasonally stratified waters control visibility for subsea engineering

"How to time ROV work to actually see what is needed?"

Purpose - to understand processes controlling visibility:

- oceanography incl. stratification, tides, int. waves...
 - particles nature, resuspension, settling, layers...

<u>AIM</u> \rightarrow predict future visibility for operations.

FOO Fremantle, 25th July. 2017 15 + 5 mins

RPS The main issue

ROV operators report:

- Very poor visibility at times
- "Strong currents"

CAGE THR: 0 DPT: 197 HDG: 242

OCEANEERING

• Visibility 'linked' to currents

Dive

at times		in the second second	
currents	CAGE THR: 88 m DPT: 162 m HDG: 160 TRN:-0.2		ROV DPT: 235 m ALT: 1 m BTY: 236 m
240 255 270 234 R: 1 : -0.0			
Number: 518	OCEANEERING	Dive Number: 433	21 MAY 1 01:20:49

CAGE

THR: 97 m

DPT: 177 m HDG: 110

TRN:-0.4

TRN: O.

ROV

DPT: 236 m

BTY: 236 m

Often unworkable for ROV due to poor visibility.

WHY? WHEN? HOW BAD?

RPS Field measurements

- Shell Australia Geomatics/Metocean team proposed to measure currents and turbidity to address on-going visibility issues.
- RPS MetOcean were engaged by Shell Australia for 12-month survey & analysis (sponsored by Subsea team)

Two moorings comprising:

- CM-04 current meters
- Turbidity (NTU) loggers
- Temp. loggers
- Tide gauge
- LISST (Laser In Situ Scattering & Transmissometry)

Also, & <u>critically</u>:

- Water sampling and lab analysis
- Water quality profiling (LISST, NTU, CTD)

RPS Time series

Tide height [m]

A. Strong tidal signal, so tidal constituents derivedfor turbidity and Beam-C data

B. Combine ROV logs with time-series data

For each depth bin, tidal relationships are modified, using measurement-based 'rules'.

Date	Time Period	Servicing	Visibility	Current	Additional comment
12/03/201	5 15:14 - 18:12	ROC at P8 to dredge	Workable	workable	*No indicators given of visibility or current, operations carried out succ
12/03/201	5 18:12 - 21:31	ROV in cage	unworkable	N.A.	
12/03/201	5 21:31 - 24:00	ROC at P8 to dredge	Workable	workable	*No indicators given of visibility or current, operations carried out succe
13/03/201	5 00:30 - 11:33	dredge P8	Workable	workable	*No indicators given of visibility or current, operations carried out succe
13/03/201	5 16:40 - 24:00	dredge P8	Workable	workable	*No indicators given of visibility or current, operations carried out succe
14/03/201	5 00:30 - 11:48	dredge P8	Workable	workable	*No indicators given of visibility or current, operations carried out succe
14/03/201	5 19:00 - 22:50	ROV in cage waiting on improved current and visibility prior to ADL ops	unworkable	Unworkable	
16/03/201	5 11:21 - 12:00	ROV in cage at depth waiting for improved currents and vis	unworkable	Unworkable	
16/03/201	5 12:30 - 13:40	P1 ADL EFL on Park receptical	Workable	workable	*No indicators given of visibility or current, operations carried out succe
16/03/201	5 13:40 - 14:05	Remove recovered ADL and fix replacement	Workable	workable	*No indicators given of visibility or current, operations carried out succe
16/03/201	5 14:05 - 17:30	Replace ADL installed in P1 suspension cap and AFL back on ADL	Workable	workable	*No indicators given of visibility or current, operations carried out succe
18/03/201	5 02:40 - 24:00	jackhammer operations @ well 8	Workable	workable	*No indicators given of visibility or current, operations carried out succe
20/03/201	5 04:00 - 12:00	dredging well 8 poor vis, heavy current	Borderline	Borderline	
20/03/201	5 12:30 - 14:37	dredging well 8 poor vis, heavy current	Borderline	Borderline	
20/03/201	5 14:37 - 15:47	dredging well 8 visibility worsening qucikly	Worsening Quickly	N.A.	
20/03/201	5 15:47 - 15:53	Attempt to go to P8, very poor vis	Very poor	N.A.	*had to return to cage
20/03/201	5 15:53 - 17:23	ROV to P8 to continue dredging	Workable	workable	*No indicators given of visibility or current, operations carried out succe
20/03/201	5 17:23 - 24:00	dredging well 8 poor vis, heavy current	Borderline	Borderline	
21/03/201	5 00:30 - 00:49	dredging well 8 poor vis, heavy current	Borderline	Borderline	
21/03/201	5 00:49 - 05:22	standy	unworkable	Unworkable	in cage waiting on current and vis
21/03/201	5 05:22 - 10:23				
21/03/201	5 10:23 - 12:30	standy	unworkable	Unworkable	in cage waiting on current and vis
21/03/201	5 12:30 - 13:20	Attempt to go to P8, very poor vis, return to cage	unworkable	Unworkable	
21/03/201	5 13:26 - 16:15	Attempt to go to P8, very poor vis, return to cage	unworkable	Unworkable	
22/03/201	5 07:50 - 08:40	Bullseye check on BOP,	low	strong	
22/03/201	5 08:40 - 12:00	standy	unworkable	Unworkable	in cage waiting on current and vis
22/03/201	5 12:30 - 13:10	Attempt to go to P8, very poor vis, return to cage	unworkable	Unworkable	
22/03/201	5 13:10 - 18:00	standy	unworkable	Unworkable	*monitoring current, in excessof 1 knot
23/03/201	5 00:30 - 01:10	standy	unworkable	Unworkable	in cage waiting on current and vis
23/03/201	5 01:10 - 05:57	dredging well 8 poor vis, heavy current	Borderline	Borderline	
23/03/201	5 08:05 - 13:00	standy	unworkable	Unworkable	in cage waiting on current and vis

Work comprised 2 phases:

<u>Phase I</u> – Quantify 'unworkable'
<u>Phase 2</u> – Quantify visibility range

2

04

05 06 07

08 09

10 11

12 13

14 15 16

7

Some of the factors follow...

21

22 23

24 25

28

26 27

29 30

31

01

19 20

17 18

RPS Strongly seasonal oceanography

Base of thermocline at 30 - 40 m ASB for ~half the year

RPS Vertical profiles reveal near-bed complexity

Particle size distributions – e.g. of vertical gradient in basal 35 m

RPS

So – lots of oceanographic and sedimentary complexity...

Height above seabed (m)

Height above seabed (m)

Height above seabed (m)

DAILY - Maximum visibility range, basal 50 m

RPS How have visibility predictions helped the project?

- Significantly reduced downtime during multiple subsea campaigns
 - Incl. installation, survey and inspection.
- Validated on multiple campaigns
 - Feedback on their use and accuracy has been excellent
- Will be used to inform on-going inspections
- In initial field phases, visibility was a significant and difficult issue. It was recognised that an investment in understanding the environment would lead to significant savings throughout the life of the project.

Shell Australia

Piers Larcombe (RPS MetOcean, Perth) Michael Garvey (Shell Australia, Perth)

CONCLUSION

Underwater visibility for subsea engineering <u>can</u> be predicted to help operations.

Requires:

- appropriate measurements
- correct scientific understanding.

FOO Fremantle, 25th July. 2017 15 + 5 mins