

Grand Challenges Facing Our Oceans : The Role of Science and Engineering in Providing Solutions.

John Gunn

AIMS: Australia's tropical marine research agency.

Outline

- 1. Economic Value of Ocean Industries and Ecosystem Services
- 2. Challenges to our Oceans and Coasts in the Anthropocene
- 3. UN Sustainable Development Goal 14 (Oceans)
- 4. Meeting the plethora of Challenges : What is required of science and engineering?
 - Global Ocean Observing
 - National Marine Science Plan
 - A Case Study The Great Barrier Reef

The Global "Blue Economy" (WWF, 2015)

AIMS Index of Marine Industries

- Predicted to be worth \$100 billion in 2025
- > Agriculture in economic value add

AIMS: Australia's tropical marine research agency.

One planet, one ocean Climate

Water

All the Cycles of Life

Nitrogen

Oxygen

The anthropocene A new age of human impact

There's no dispute that humans are leaving their mark on the planet, but geologists and other scientists are debating whether this imprint is distinctive and enduring enough to designate a new epoch: the Anthropocene

Science 7 October 2011

26 May 2011

The anthropocene Population and CO₂

Earth has warmed by 0.8 C since 1880

Where is global warming going?

The anthropocene: changing ocean environment HOt

World Meteorological Organization 2016

The anthropocene: changing ocean environment Sour: 8.40 400 160°W 158°W 156°W 23°N Station Aloha 22°N Ocean acidification 375 21°N 8.30 20°N Station Mauna Loa 8.25 19°N

350

325-

CO2

CO2 280 PPM

CO2 450 PPM SOURCE: O. HOEGH-GULDBERG ET AL., SCIENCE 318, 5857 (14 DECEMBER 2007)

8.35

-8.20 동

The anthropocene: changing ocean environment Breathless: deoxygenation

Gruber, Phil. Trans. R. Soc. A, 2011

The anthropocene: changing ocean environment Rising Sea Level

The anthropocene Population and nutrients

Coastal Nitrogen Loading : 1990 (in Blue) and 2050 (Business-as-Usual Scenario) (in Red)

The anthropocene Fishing

The anthropocene Plastics

Law et al., Science, 2010

The anthropocene Sound

Boyd et al., Oceanography, 2011

Human vulnerability and the ocean Coastal livelihoods and ocean economy

Human vulnerability and the ocean Ecosystem health

The anthropocene Cumulative impact

SDG 14 – The Oceans

 Very Low Impact (<1.4)</th>
 Medium Impact (4.95–8.47)
 High Impact (12–15.52)

 Low Impact (1.4–4.95)
 Medium High Impact (8.47–12)
 Very High Impact (>15.52)

Α

Halpern et al., Science, 2008

SDG 14 Challenges?

- Economic and Social Drivers V Long Term Sustainability.
- Governance (in all its guises) : Local, National, Regional, "High Seas"
- Poorly defined management objectives, strategies and measures. Lack of Effective Assessment E.g. 2014 World Ocean Assessment.
- <u>Legacy</u> of systemic and long term underinvestment in preventing and restoring ecosystem degradation.
- Grossly inadequate observing/monitoring/modelling of most components of marine systems (incl. socio- economic) to inform policy-makers, investors and managers in both the private and public sectors.

Global Ocean Observations

The Global Ocean Observing System

GLOBAL CORAL REEF MONITORING NETWORK

AIMS: Australia's tropical marine research agency.

GOOS/GCOS 2010 implementation goals

GOOS for climate

global participation varies by network

Framework for Ocean Observation

AIMS: Australia's tropical marine research agency.

EOVs and readiness level

CONCEPT PILOT MATURE *also ECV ** First tranche of bEOVs

Physics

- •Sea State*
- •Ocean surface vector stress*
- •Sea Ice*
- •Sea level*
- •SST*
- •Subsurface
- temperature*
- •Surface currents*
- Subsurface currents*
- •SSS*
- •Subsurface salinity*

Biogeochemistry

- •Oxygen*
- Inorganic macro nutrients*
- •Carbonate system*
- •Transient tracers*
- •Suspended particulates
- •Nitrous oxide*
- •Carbon isotope (¹³C)
- Dissolved organic carbon

Biology and Ecosystems**

- Phytoplankton* biomass and productivity
- HAB incidence
- Zooplankton diversity
- Fish abundance and distribution
- Apex predator abundance and distribution
- Live coral cover
- Seagrass cover
- Mangrove cover
- Macroalgal canopy cover

		lists-ioc-goos.org	Ċ	(† 17 († †
Framework for Oc	ean Observing		OBSERVATIONS	
REQUIREMENT	S			
Themes	Societal Benefit	Scientific Issue	Essential Ocean Va	riable Observing
		, , , ppreservin	Surface current	clement
			SST	
			current	
			Sea level	
			SSS	HE radar
			temperature	hopical moored arrays
			Sea state	SST virtual constellation an infact opography constellation SSS sublitie missions XSI stand TSGs
		Heat-transport	oxygen	
		Sea level monitoring Decadal predictability	Sea ice	profiling floats
Climate Real-time Services Ocean health	Climate services	Upwelling systems	Carbonato evolom	Addition of the states
	Mitigation of elimate change Adaptation to elimate change	Non-CO2 greenhous	e gas oycles Macro Nutrients	repeat/hydrography
	Tsunami-risk mitigation	Ocean additication	Ocean colour	Giders (subsurface)
	Efficient maritime economy	Changes in ocean ca	upon contraplankton	Sea state satellite missions
	Carbon storage	- Inundation early wan	hing Carbon-13	moored time series
	Human health	Ocean forecastinSus Weather forecastDig	solved Organic Matter	Sea ice satellite missions
	Coastal protection Food security Tourism/outtural	Ocean-productivity /	Zooplankton	Ships of Opportunity
		Ocean dead zopes e	Chlorophyll	Ship-based timeseries
	Glean waters	Water quality	Seagrass area C	cean color radiometry constellation
	Biodiversity	Ecosystem services	Salt-marsh area	zooplankton surveys
		Human impact	Harmful Algal Blooms	multiple elements
		Biodiversity and habi	tats Coral cover	Mangrove surveys Coral reef surveys

GOOS Regional Alliances

and collaborating regional observing systems

AIMS: Australia's tropical marine research agency.

Future of Global Ocean Observations & Information Services ?

- Momentum from SDG 14, G7 Science Priorities, WOA2
- Increased Investment by China, India, Korea, Europeans
- Committed OO community, better coordinated than ever.

BUT

- Lack of user pull/real commitment to ensure OO data are critical, fit for purpose, available for all.
- Lack of a Global Strategy linking Ocean Data, Modelling and Services.
- Government investment by a number of developed states reducing in real terms + threat of US withdrawal.
- Very little integration across Private/Industry interests.
- Critical capability/capacity limited across globe.

National Marine Science Plan

- Focused on addressing National "Grand Challenges"
- 500+ Scientists & end users collaborated on Plan
- <u>Stressed nationally coordinated approaches essential</u> for delivering the Plan.

Fundamental **Applied** Science

and Engineering focussed on challenges & end-users

In \$ constrained operating environment : Strategic thinking, planning & investment + Partnerships and Critical

- National Baselines, Observation Systems & Core Modelling frameworks to service multiple end users.
- New technology and innovation required to describe & monitor environment, boost marine industries, & adapt to climate change
- It's not just about bophysical science engineering and so cio-economics critical.
- Marine science education requires a rethink

The Great Barrier Reef Challenge Moving from Discovery & Problem Identification

Cumulative pressures

D'Eath et al. 2012

AIMS: Australia's tropical marine research agency.

*upper and lower quartiles

Coral cover on the GBR 1985-2016

Independent Expert Panel May 2017

"Members agree that in our lifetime and on our watch, substantial areas of the Great Barrier Reef and the surrounding ecosystems are experiencing major longterm damage which may be irreversible unless action is taken now".

AIMS Executive

"It's time for reef science/scientists to make the shift from defining problems in more and more detail, to developing and implementing solutions"

What to do?

 Mitigation critical - to avoid ocean temperatures warming above 1.2-1.5C.

What else?

- Amplifying existing measures to increase the resilience of the GBR is also important
 - Improving water quality through improved land use practices
 - Eradicating Crown of Thorns Starfish*
 - Reducing poaching on Green Zone Reefs through enhanced monitoring and compliance
 - Ensuring coastal development does not impact the GBR lagoon.

* Current methods unlikely to be effective for anything other than localised control – chemical, genetic, robotic improvements required.

New intervention approaches required

- Mitigation + Enhancing Resilience are <u>critical but are likely to be</u> <u>insufficient</u> to halt further declines in the GBR and coral reefs world wide.
- Rapidly growing realization that <u>we need new methods</u> for active intervention, to increase resistance of corals to climate change, restore/rehabilitate reefs at large scale, reduce heat stress.
- And that these are needed within the next 15-20 years.

The GBR Innovation Challenge

AIMS: Australia's tropical marine research agency.

Thank you

Acknowledgements : Dr's Steven Rintoul (CSIRO), David Wachenfeld (GBRMPA), Line Bay, Britta Schaffelke, Madeleine Van Oppen (AIMS), Albert Fisher (UNESCO-IOC).