

Maximising impact and value from marine observations

- modelling tools for network design

Boris Kelly-Gerreyn, **Chris Tingwell**, Sergei Soldatenko, Peter Steinle, Robert De Maid and Agnes Lane

Bureau's National Observing Network -Land, Ocean & Atmosphere

- Point Data
- Automatic Weather Stations
- Rainfall Observations
- Upper Air Balloon Flights
- Sea level stations & buoys
- Total ozone
- Medium-area Coverage (Hundreds of km)
- Radar
- Lightning Detectors
- Aviation measurements
- Wide-area Coverage (Thousands of km)
- Polar-Orbiting Satellites
- Geostationary Satellites

But how do we know the value & impact of these observations ?

We can use models

- Ocean forecasting
- Numerical Weather Prediction

Data assimilation

How observations impact on forecast skill

Numerical Weather Prediction (NWP) is an initial value problem

initial condition

FUTURE forecast

The role of **data assimilation** in NWP is to <u>specify the initial condition as accurately as possible</u>.

Bureau's NWP = ACCESS NWP Suites

The Assimilation Data Sources

The Assimilation Data Sources

Temperature, humidity, pressure and wind are the key observations

How to assess impact of observations

• Observing System Experiments (OSE)

 Observing System Simulation Experiments (OSSE)

= Data denial experiments

OSE Forecast rainfall – NO satellite data

OSE : Forecast rainfall **WITH** satellite data

OSE is a powerful technique OSE is highly expensive on CPU Not routinely or often performed

Assessing the impact of observations

- Forecast Sensitivity to Observations (FSO)
 - Developed by UK Met Office
 - Adjoint method
 - 4D Var assimilation

Key metric – reduction in 24hr forecast error due to observations

Forecast Sensitivity to Observations

Advantage over OSE	 Runs in real-time Computationally cheap
Assesses impact of	 Observation types Instruments Networks and subnetworks Groups of stations etc
Caution	 Not data denial Impact of an observation amongst all of the observations

FSO Application

FSO – Global skill impact from each observation type in ACCESS NWP

Impact per **observation**

Impact per day

FSO – Buoy impacts Globally

FSO – Buoy impacts in Australian region

FSO – impact of radiosondes

Summary of Progress

- FSO suite developed + analysis and visualisation tools
- Running routinely in real-time
- Evaluation and ranking of Bureau observations
- Supporting network assessment
- Marine, Upper air and Satellite observations have high impact

Next three years...

- Operationalise
- Focus on particular weather events e.g. TC Debbie, Yasi
- Customer engagement : what do you need to improve impact and value
- Impact per dollar invested
- Build hind-cast runs to yield seasonal sensitivities
- Build performance monitoring systems
- New observation types, instruments etc.
- City scale NWP