Wave Forecast and Wave Climate, Advances and Challenges

Alexander Babanin, Ian Young and Stefan Zieger

Swinburne University, Melbourne Australian National University, Canberra Australian Bureau of Meteorology, Melbourne

> Australian Forum for Operational Oceanography 2015 Fremantle, WA July 23, 2015

SWINBURNE UNIVERSITY OF TECHNOLOGY

Wave Forecast, History and Significance

- 1st Generation models, WWII, primitive connection of wave height *H* with wind speed *U*
- "Number of lives saved.. is reasonably assumed to be in the thousands over the course of the war" (Rogers et al., 2014)
- 2nd Generation models, mid 60s, spectral, wind sea and swell separated, balance of input and dissipation
- 3rd Generation models, mid 80s, full physics (supposedly)

Ulluwatu swell, Bali

Henrique Rapizo: swells are normally delayed by one to one and a half days to the forecast

Fully nonlinear 3D potential wave modelling

Chalikov & Babanin, OMAE 2013

- Describes temporal and spatial evolution of the wave energy spectrum *E(k,f,q,t,x)*
- S_{tot} all physical processes which affect the energy transfer
- S_{in} energy input from the wind
- S_{ds} dissipation due to wave breaking
- S_{nl} nonlinear interaction between spectral components
- S_{bf} dissipation due to interaction with the bottom

$$\frac{dE(k, f, q, x, t)}{dt} = S_{tot} = S_{in} + S_{ds} + S_{nl} + S_{bf}$$

Motivation

- physics (parameterisations of the source terms) was cursory
- had not been updated for some 20 years
- was not based on observations
- bulk calibration

Requirements for the modern-date models:

- more accurate forecast/hindcast
- being used in the whole range of conditions, from swell to hurricanes
- coupling with weather, ocean circulation and climate models

Wind Input $\frac{\frac{dE(k, f, q, x, t)}{dt} = S_{tot} = S_{in} + S_{ds} + S_{nl} + S_{bf}}{following the waves}$

Young et al., JAOT, 2005, Donelan et al., JAOT, 2005, JPO, 2006, Babanin et al., JPO, 2007

The parameterisation, growth rate γ

Breaking Dissipation S_{ds}

 $\frac{dE(k, f, \boldsymbol{q}, \boldsymbol{x}, t)}{dt} = S_{in} + S_{ds} + S_{nl} + S_{bf}$

two passive acoustic methods to study spectral dissipation

- segmenting a record into breaking and non-breaking segments
- using acoustic signatures of individual bubble-formation events

Babanin et al., 2001, 2007, 2010, Babanin & Young (2005), Manasseh et al. (2006), Young and Babanin (2006), Babanin & van der Westhuyusen, Babanin (2011)

Whitecapping Dissipation S_{ds}

$$\frac{dE(k, f, \boldsymbol{q}, x, t)}{dt} = S_{in} + S_{ds} + S_{nl} + S_{bf}$$

• spectral dissipation was approached by two independent means based on passive acoustic methods

• if the wave energy dissipation at each frequency were due to whitecapping only, it should be a function of the excess of the spectral density above a dimensionless *threshold spectral level*, below which no breaking occurs at this frequency. This was found to be the case around the wave spectral peak. *dominant breaking*

• dissipation at a particular frequency above the peak demonstrates a *cumulative effect*, depending on the rates of spectral dissipation at lower frequencies

 $S_{ds}(f) = a \times f(F(f) - F_{thr}(f))A(f) + b \grave{O}F(g) - F_{thr}(g))A(g)dg$

- dimensionless saturation threshold value of $\sqrt{\sigma_{thr}(f)} \approx 0.035$ should be used to obtain the dimensional spectral threshold $F_{thr}(f)$ at each frequency f
- dependence on the wind at strong wind forcing

Swell attenuation

Young, Babanin, Zieger, JPO, 2013 Swell attenuation

-30

The approach

$$\frac{dE(k, f, \boldsymbol{q}, \boldsymbol{x}, t)}{dt} = S_{tot} = S_{in} + S_{ds} + S_{nl} + S_{bf}$$

- Traditional approach (ie. Komen et al. (1984)): reproduce known growth curves – i.e. model the balance of the source functions rather than the functions themselves
- Main constraint: integral wind momentum input must be equal to the total stress less viscous stress:

$$\bigotimes_{0}^{f_{*}} (f) df = \bigotimes_{0}^{f_{*}} S_{in}(f) df = t_{w}$$

- experimental dependences for total stress and viscous stress are used
- experimental dependences for ratio ot total input and total dissipation are used

$$\bigotimes_{0}^{f_{*}} (f) df \mathfrak{L} \bigotimes_{0}^{f_{*}} (f) df$$

TESTING, CALIBRATION, VALIDATIONS

Tropical Cyclone Yasi Eastern Australia

cyclone and altimeter tracks (top) coastal measurements vs. model, for three winds fields (bottom)

global hindcast

WAVEWATCH-III vs. altimeter 2006 (full year), wave height scatter plot (above), bias (below)

global and regional wave climate

 waves can serve as a climate indicator and also influence the atmospheric and oceanic climate

Young, Zieger and Babanin, Science, 2011

Other developments

- wave-bottom interaction routine (ready)
- bottom sediment
- ripple formation due to waves
- new non-linear interaction term (tested)
- both resonant and quasi-resonant interactions
- Stokes corrections
- wave breaking
- wave-current interactions (in progress)
- wave-ice interactions

observation-based source terms Released in WAVEWATCH-III (ST6) and SWAN

- *Wind input* (Donelan et al. 2006, Tsagareli et al. 2010)
- weakly nonlinear in terms of spectrum
- slows down at strong winds (drag saturation)
- constraint on the total input in terms of wind stress
- *Breaking dissipation* (Babanin & Young 2005, Rogers et al. 2012)
- threshold in terms of spectral density
- cumulative effect away from the spectral peak
- strongly nonlinear in terms of spectrum
- *Non-breaking (swell) dissipation* (Babanin 2011, Young et al. 2013)
- interaction of waves with water turbulence
- <u>Negative input</u> (adverse or oblique winds, Donelan 1999, unpublished Lake George observations)
- of principal significance for modelling waves in tropical cyclones
- *Physical constraints* (Babanin et al. 2010, Tsagareli et al. 2010)

Where to go?

Metrics missing

Requires a reasonable effort

 spectrum properties: α, γ, σ, f⁻⁴ to f⁻⁵ transition, BFI

Difficult to do

 fluxes: wind stress, radiation stress, partitioning of the dissipation between the water and air, extreme conditions

Very difficult to do

 directional distributions, both for the spectra and for the source terms

Wave Models Based on Full Physics

Can be used for

- prediction of adverse events (dangerous seas, freak waves, swells, breaking, steepness, PDF tail)
- outputting the fluxes
- coupling with extreme weather (hurricane) models
- coupling with atmospheric and oceanic modules of GCMs, atmospheric boundary layer, ocean circulation, climate

fourth generation models

wind trends, by SSM/I

mean wind speed (May 1991-2008)

Trend analysis (MK test) applied to monthly mean SSM/I (F10,F11,F13) wind and precipitation from 1991 to 2008. Hatching indicates significant changes (normcdf test [95% level]) and contour interval is 2.00 cm s⁻¹ per year.

wind trends, by SSM/I

mean wind speed (Jun 1991-2008)

Trend analysis (MK test) applied to monthly mean SSM/I (F10,F11,F13) wind and precipitation from 1991 to 2008. Hatching indicates significant changes (normcdf test [95% level]) and contour interval is 2.00 cm s⁻¹ per year.