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Wave Forecast, History and Significance 

• 1st Generation models, WWII, primitive connection 
of wave height H with wind speed U 

• “Number of lives saved.. is reasonably assumed to 
be in the thousands over the course of the war” 
(Rogers et al., 2014) 

• 2nd Generation models, mid 60s, spectral, wind sea 
and swell separated, balance of input and 
dissipation 

• 3rd Generation models, mid 80s, full physics 
(supposedly) 



Ulluwatu swell, Bali 

Henrique Rapizo: swells are normally delayed by one to one and a half days to the forecast 



Chalikov & Babanin, OMAE 2013 

Fully nonlinear 3D potential 
wave modelling 



Radiative Transfer Equation is used in 
spectral models for wave forecast 
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ØDescribes temporal and spatial evolution of the 
wave energy spectrum E(k,f,q,t,x) 

Stot –  all physical processes which affect the energy transfer 
Sin –  energy input from the wind 
Sds –  dissipation due to wave breaking 
Snl –  nonlinear interaction between spectral components 
Sbf –  dissipation due to interaction with the bottom 



Motivation 

• physics (parameterisations of the source terms) was 
cursory 

• had not been updated for some 20 years 
• was not based on observations 
• bulk calibration 
Requirements for the modern-date models: 
• more accurate forecast/hindcast 
• being used in the whole range of conditions, from swell 

to hurricanes 
• coupling with weather, ocean circulation and climate 

models 
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Wind Input 
following the waves 
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Young et al., JAOT, 2005, Donelan et al., JAOT, 2005, JPO, 2006, 
Babanin et al., JPO, 2007 



The parameterisation, growth rate γ 
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(U/c-1)^2 

ak*(U/c-1)^2 

G*ak*(U/c-1)^2 



Breaking Dissipation Sds bfnldsin SSSS
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two passive acoustic methods to study spectral dissipation 
- segmenting a record into breaking and non-breaking segments 
- using acoustic signatures of individual bubble-formation events 

Babanin et al., 2001, 2007, 2010, Babanin & Young (2005), Manasseh et al. (2006), Young 
and Babanin (2006), Babanin & van der Westhuyusen, Babanin (2011) 



Breaking probability 
dominant waves bfnldsin SSSS
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• spectral dissipation was approached by two independent means 
based on passive acoustic methods 
• if the wave energy dissipation at each frequency were due to 
whitecapping only, it should be a function of the excess of the 
spectral density above a dimensionless threshold spectral level, 
below which no breaking occurs at this frequency. This was found to 
be the case around the wave spectral peak.  dominant breaking 
• dissipation at a particular frequency above the peak demonstrates 
a cumulative effect, depending on the rates of spectral dissipation 
at lower frequencies  
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• dimensionless saturation threshold value of   
should be used to obtain the dimensional spectral threshold Fthr(f) at 
each frequency f  
• dependence on the wind at strong wind forcing 

Whitecapping Dissipation Sds 



Swell attenuation 



Swell attenuation 
Young, Babanin, Zieger, JPO, 2013 



The approach 
• Traditional approach (ie. Komen et al. (1984)): reproduce known 

growth curves – i.e. model the balance of the source functions 
rather than the functions themselves 

• Main constraint: integral wind momentum input must be equal to 
the total stress less viscous stress: 
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• experimental dependences for total stress and viscous stress are 
used 
• experimental dependences for ratio ot total input and total 
dissipation are used 
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TESTING, CALIBRATION, VALIDATIONS 



Tropical Cyclone Yasi 
Eastern Australia 

cyclone and altimeter tracks (top)  
coastal measurements vs. model, 
for three winds fields (bottom) 

global hindcast 
WAVEWATCH-III vs. altimeter 
2006 (full year), wave height 
scatter plot (above), bias (below) 



global and regional wave climate 

 
• waves can serve as a climate indicator and 

also influence the atmospheric and oceanic 
climate 



Young, Zieger and Babanin, Science, 2011 



Other developments 

• wave-bottom interaction routine (ready) 
- bottom sediment 
- ripple formation due to waves 
• new non-linear interaction term (tested) 
- both resonant and quasi-resonant interactions 
- Stokes corrections 
- wave breaking 
• wave-current interactions (in progress) 
• wave-ice interactions 



observation-based source terms 
Released in WAVEWATCH-III (ST6) and SWAN 
• Wind input (Donelan et al. 2006, Tsagareli et al. 2010) 
- weakly nonlinear in terms of spectrum 
- slows down at strong winds (drag saturation) 
- constraint on the total input in terms of wind stress 
• Breaking dissipation (Babanin & Young 2005, Rogers et al. 2012) 
- threshold in terms of spectral density 
- cumulative effect away from the spectral peak 
- strongly nonlinear in terms of spectrum 
• Non-breaking (swell) dissipation (Babanin 2011, Young et al. 2013) 
- interaction of waves with water turbulence 
• Negative input (adverse or oblique winds, Donelan 1999, unpublished 

Lake George observations) 
- of principal significance for modelling waves in tropical cyclones 
• Physical constraints (Babanin et al. 2010, Tsagareli et al. 2010) 



Where to go? 



Metrics missing 
Requires a reasonable effort 
• spectrum properties: α, γ, σ, f-4 to f-5 transition, 

BFI 
Difficult to do 
• fluxes: wind stress, radiation stress, partitioning 

of the dissipation between the water and air, 
extreme conditions 

Very difficult to do 
• directional distributions, both for the spectra and 

for the source terms 



Wave Models Based on Full Physics 
Can be used for 
• prediction of adverse events (dangerous seas, 

freak waves, swells, breaking, steepness, PDF tail) 
• outputting the fluxes 
• coupling with extreme weather (hurricane) 

models 
• coupling with atmospheric and oceanic modules 

of GCMs, atmospheric boundary layer, ocean 
circulation, climate 

fourth generation models 
 



wind trends, by SSM/I 



wind trends, by SSM/I 
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