

Assessment of Metocean Forecast Data and Consensus Forecasting

*Ben Brushett¹, Brian King¹ and Charles Lemckert² ¹RPS APASA, ²Griffith University

Forum for Operational Oceanography Fremantle – July 2015

apasa.com.au

Overview of Presentation

Seckground

- **§** Two drifter studies Tasman Sea (2010) and Indian Ocean (2012)
- Four ocean models tested based on three different ocean forecast models (BLUElink, FOAM, HYCOM, and NCOM)
- S Consensus forecasting applied, combining all four ocean models

Background

- S The studies were undertaken as there are now several different ocean current forecast systems available in the Australian region
- S It was deemed that an assessment of these models should take place to determine which may be the most reliable for maritime SAR and pollutant response (i.e. oil spills)
- Serbaps a combination of all four models (using consensus forecasting) may be a better approach?
- Sused a particle trajectory model to predict the drift of drifters in the Tasman Sea and in the Indian Ocean

SARMAP and the COASTMAP EDS

- S Drift modelling software SARMAP
 - » Lagrangian particle trajectory model
 - » Uses large number of particles to simulate the potential trajectories and dispersion of drifting objects
 - » Ocean current forecasts and wind forecasts from the COASTMAP EDS are used to provide environmental forcing to the model
 - » Rather than focussing on any single ocean forecast use as many forecast models as are available

SARMAP particle trajectory model

- S The figure shows a sample output:
 - » 1,000 particles
 - » Convex hull surrounding all particles
 - » Centroid of particles

Model Settings

Parameter	Tasman Sea Study	Indian Ocean Study
Model Simulation Time:	120 Hours	120 Hours
Initial Position Error:	0.5 Nm	0.5 Nm
Search Object	SVP and SVP-L	SVP
Leeway Speed	0.1% and 1%	0.1%
Divergence Angle	0°	0°
Wind Forcing:	GFS	GFS
Current Forcing:	BLUElink, FOAM, HYCOM,	BLUElink, FOAM, HYCOM,
	NCOM	NCOM
Model Time Step (dt):	10 Minutes	10 Minutes
Model Output Frequency:	60 Minutes	60 Minutes
Number of Model Particles:	1,000	1,000

Metocean Datasets

Model	Horizontal	Vertical	Temporal	Grid Limits
Name	Resolution	Coordinate	Resolution	[Higher Resolution]
BLUElink	1/10° (11.1 km)	47 z levels	24 hr	Global [16°N - 75°S, 90°E - 180°E]
FOAM	1/6° (18.5 km)	50 <i>z</i> levels	24 hr	Global [0°N - 60°S, 100°E - 77°W]
HYCOM	1/12° (9.3 km)	32 Isopycnal/ <i>o</i> /z	24 hr	Global
NCOM	1/8° (13.9 km)	40 <i>σ</i> / <i>z</i> level	6 hr	Global
GFS	1/2° (55.6 km)	64 σ levels	6hr	Global

What is Consensus Forecasting?

- S Consensus forecasting is the addition or combination of several individual forecasts to a single multi-model forecast
- SUsing 'consensus' as the basis for a decision emanates from the notion that the cumulative knowledge of all concerned individuals is greater than that of a single individual. Fritsch, et al. (2000)

Tasman Sea Drifter Study

- **§** January to December 2010
- § 63 x 5-day SVP/SVP-L drifter tracks
- **§** Four different ocean models
- **§** Error analysis including:
 - » Mean Absolute Error (MAE) in km
 - » Hit rate analysis

RPS APASA Tasman Sea Currents

BLUElink

HYCOM

NCOM

RPS APASA Tasman Sea Drifter Study

S Mean Absolute Error (MAE) – Minimum and Average

RPS APASATasman Sea Drifter Study

S Hit rate at 24 hours and 120 hours

	24 hours	120 hours	
	Hit Rate	Hit Rate	
BLUElink	73.0%	68.3%	
FOAM	74.6%	63.5%	
НҮСОМ	88.9%	82.5%	
NCOM	79.4%	77.8%	
2+ Consensus	84.1%	84.1%	
3+ Consensus	76.2%	69.8%	
4 Consensus	61.9%	42.9%	

Indian Ocean Drifter Study

- **§** January to September 2012
- 45 x 5-day SVP drifter tracks
- Four different ocean models
- **§** Error analysis including:
 - » Mean Absolute Error (MAE) in km
 - » Hit rate analysis
 - » Search area size comparison
 - » Drift length comparison

RPS APASA Indian Ocean Currents

RPS APASA Indian Ocean Drifter Study

S Mean Absolute Error (MAE) – Minimum and Average

RPS APASA Indian Ocean Drifter Study

S Hit rate and Search Area Size at 24 hours and 120 hours

	24 hours		120 hours	
	Hit Rate	Search Area	Hit Rate	Search Area
		(km²)	nit Kale	(km²)
BLUElink	84.4%	5,568	64.4%	36,966
FOAM	88.9%	5,396	80.0%	32,491
НҮСОМ	93.3%	4,936	71.1%	35,945
NCOM	84.4%	5,439	80.0%	31,541
2+ Consensus	95.6%	5,880	88.9%	38,083
3+ Consensus	86.7%	4,188	73.3%	23,803
4 Consensus	68.9%	2,400	37.8%	10,174

RPS APASA Indian Ocean Drifter Study

S Drift Length

120 hours	Length (km) [%]	
	Average	
SVP Drifter	134.7	
BLUElink	144.3 [+7.2%]	
FOAM	91.4 [-32.1%]	
НҮСОМ	116.0 [-13.8%]	
NCOM	84.2 [-37.5%]	

Length (km)

Conclusions

- Sood result from all four models and the results indicate that all four models performed adequately
- Several models are required for consensus forecasting to work
- Further work may be required in terms of developing other metrics for model evaluation
- S Continuous evaluation is essential as models evolve
- S Drift comparisons of the forecast currents with drifters is very important in terms of operational oceanography and the application of the use of ocean currents for forecasting the drift of persons, craft, objects, or oil at sea.

Future works

- S Undertake further drift studies with SLDMB drifters where possible.
- **§** Undertake comparisons with

RPS APASA

- » The BLUElink ensemble averaged surface velocity layer, compared with the present use of BLUElink
- » New BLUElink coming out later this year
- » The latest versions of HYCOM-NCEP and HYCOM-NAVY, and the latest version of UK FOAM.
- » Further investigate and refine the Consensus Forecast methodology

Thank You

S Thank you for your attention throughout this presentation

