

Practical Application of Drift Modelling to Search and Rescue

Drift Modelling for Search and Rescue

- Modelling Review by SAR Practitioners
- Determination of Targets
- Overall Search Area
- Optimal Sweep Width/Track Spacing
- Compromise (if required)
- Practical Track Spacing
- Determination of Search Assets
- Allocation and Search planning
- Additional considerations
- Validation of Drift planning

Determination of Targets

- Affects Drift Characteristics for modelling purposes
- Affects visual and electronic search track spacings

What am I searching for?

Overall Search Area

Optimal Sweep Width/Track Spacing

- Target Type + Size
- Search Asset Type
- Search Asset Speed
- Search Sensor Type
- Weather Conditions
- Sea/Swell State

Ideally Sweep Width (W) = Track Spacing (S) Track Spacing is the distance between adjacent search legs

Compromise (If Required)

Do I have adequate search assets & search time available to search at a trackspacing which is equal to Sweep Width?

If no.....then I must Compromise.....

- Search Asset Speed Speed up cover more miles therefore bigger area – lower POD
- Widen Track spacing lower POD
- Reduce Search Area Target may not be within it

Effect on increasing Track Spacing

Practical Track Spacing

- Track Spacing Calculator integrated into Nexus
- Last Light Calculator assists in calculating Search Time available
- Search Time Available (Search Assets)

Weather: WINDSc15 KTS

Details

Vability: | 20 Km

Visual Air Search

Land

NOTE: First Search Leg may be displaced ½ S into Search Area. Turns should be made outside Search Area Boundary

	Moon Have	Moon Set	Magnetic Variation	
Ш	152102 UTC JUN 2015	160808 UTC JUN 2015	5.5 E	
Ш				
Ш				

Determination of Search Assets

- Availability
- Suitability
- Transit Time
- Target Type
- Endurance
- Sensor Fit
- Search Speed

Allocation and Search Planning

Additional Considerations

- Search Creep
- Position of sun
- Crew Fatigue
- Fuel Availability
- ue bility
- Future Weather Conditions
- Survivability

Validation of Drift Planning

- SLDMB's
- BoM local Wx Observations
- Local Knowledge
- Surface drift observations from assets on scene

Search Object Located

• 3 Lives Saved

Importance of Accurate Environmental Drift Data

Underpins our Search planning

Timelag between validation info from SLDMB's means initial search is reliant on modelling data sets

ACCURATE DATA = LIVES SAVED

Minimising personal loss/trauma to family/friends & socio-economic cost to community

