Numerical Model to Simulate Drift Trajectories of Large Vessels Simon Mortensen, HoD Marine DHI Australia

RioTinto <u><u></u>ivec</u>

Australian Government Australian Maritime Safety Authority woodside

Conceptual framework - multi-layered risk estimation

Layer 1 (2011): Ship specific risk (proxy for safety quality)

Layer 2 (2013/14/15): Eg. Nm travelled, days in area, other metric (proxy for vessel traffic densities and/or exposure)

Layer 3 (2014/15): DHI Physical environmental layer (wind, waves, currents, bathymetry)

Layer 4 (2013): Sensitivities (economic, cultural/social, ecological)

Total Risk Exposure: Protect: property, life and marine environment

Expressed as:

- probabilities
- expected numbers
- monetary value at risk (proxy to consequences)
- oil on water
- oil on coast

Layer 5 (2014/15): Effects of risk control options (RCO):

- navigational aids
- aids to navigation
- vessel traffic services
- under keel clearance
- emergency response
- inspections and audits
- pollution preparedness
- general surveillance
- others as appropriate

Limitations of Existing Approach

- Wind induced drift calculated stochastically based on a discrete number of controlled field drift experiments
- Derived model parameters only designed for small crafts and vessels
- No direct evaluation of vessel leeway drift
- Wave induced drift forces are either not included or simplified as function of the wind
- Full 3D hull representation is not included in response assessment

The Importance of Separate Treatment of Incident Forces

Wind Field

Above 32.5

30.0 - 32.5

37.5 - 30.0

25.0-27.5

228-26.0

20.0 - 22.5-

175-200

150-175

12.5-15.0

10.0 - 12.5

75-10.0

50-75-

00-28-

2.6 6.5

Wave Field

Current Field

© DHI

Introducing DHIs Drifting Vessel Model (DVM)

Forces:

$$F'_{cur} = 0.5 \cdot Lpp \cdot T \cdot \rho_{w} \cdot C_{cur} \cdot u'_{cur}^{2}$$

$$F'_{wi} = 0.5 \cdot A \cdot T \cdot \rho_{air} \cdot C_{wi} \cdot u'_{wind}^{2}$$

$$F'_{wa} = 0.5 \cdot Lpp \cdot T \cdot \rho_{w} \cdot \int_{f=0}^{f=\infty} C_{wa}(f,\theta) E(f,\theta) df - Damp$$

Moments

$$M'_{cur} = 0.5 \cdot Lpp^{2} \cdot T \cdot \rho_{w} \cdot CN_{cur} \cdot u'_{cur}^{2}$$

$$M'_{wi} = 0.5 \cdot A_{T} \cdot T \cdot \rho_{air} \cdot CN_{wi} \cdot u'_{wind}^{2}$$

$$M'_{wa} = 0.5 \cdot Lpp^{2} \cdot T \cdot \rho_{w} \cdot \int_{f=0}^{f=\infty} CN_{wa}(f,\theta) E(f,\theta) df$$

$$F'_{cur} + F'_{wi} + F'_{wa} = 0$$
$$M'_{cur} + M'_{wi} = 0$$

Incorporating Physical Response of Real Vessels

Vessel F_x, F_y and M_z depends on the following:

- Vessel Class
- Vessel Dimension
- Vessel Draft
- Loading Condition
- Water Depth
- Incident Wave Spectrum
- Relative Vessel Orientation
- Vessel Speed

© DHI

MIKE by DHI Integration

Introducing The Hockey Puck Test

Bulk Carrier, Ballast No Wind, Hs: 2m, Tp: 6s, West Wind/Wave Direction Initial Vessel 10 m/s West, no Waves Heading: 20 m/s West, no Waves 0° North **VLCC**

The expert in WATER ENVIRONMENTS

Overview of validated tracks (9 vessels)

RioTinto

-10

-10

Vessel: RTM Dias

Solid line: Netwater. Dash line: HYCOM

1.5 . 1.7 1.3 - 1.5

11-13 0.9-1.1

0.5-0.7 0.8-05

-

11/07/2014 4:45:00 PM

Vessel: RTM Djulpan

Solid line: Netwater. Dash line: HYCOM

-

6/11/2014 3:00:00 PM

Vessel: RTM Tasman

Solid line: Netwater. Dash line: HYCOM

-

5/06/2014 00:00:00

Vessel: RTM Dampier

Netwater data not available. Dash line: HYCOM

Above 1.7 1.5 - 1.1

13-15 1.1 - 1.2 0.9-1.1 0.7 - 0.90.5-0.1 03-05 0.1-0.3 Balow B.1

100

22/02/2015 00:00:00

Diamond Passage – Strategic Grounding Risk – 3 year dataset

Wave Forecast/Hindcast

- Flexible Mesh Approach
- Detailed resolution of complex areas
- Maximum CPU efficiency

OZSEA By DHI

Diamond Passage – Strategic Grounding Risk – 3 year dataset

Diamond Passage – Strategic Grounding Risk – 3 year dataset

13/10/2010 0.00:00 Time Step 1162 of 2976.

Diamond Passage – Probability Density Map

- 3 Years of historic wind, waves and currents 2011-2013
- 1019 Drifting Bulk Carriers events
- Contour plot illustrates likelihood of drifting vessel fate
- CPU time = ~6 days on a 12 core workstation

Diamond Passage – Grounding Risk

Grounding Risk Backcasting

147.5 148 148.5 149 149.5 150 150.5 151 151.5 152 15

Diamond Passage – Grounding Risk

5 D. 🖬 👌	l 🖄 🖬 🖆	C 11 11	(22 ¶)	او 🕫 🌢	A Ct a	9	1.1.4		
8.3	× Vesse	2.xml							• 3
u. Ø Clip,-	<pre></pre>	ticle) icle Nr- ATA[151. ticle Nr- ATA[151. ticle) ticle Nr- ATA[151. ticle) icle Nr- ATA[151. ticle Nr- ATA["230"> 2094040 "231"> 2565484 "232"> 3008050 "233"> 3735983 "234"> 416852 "235"> 4528059 "236"> 4731424 "237"> 4755677	,-16.40 ,-16.43 ,-16.44 ,-16.45 ,-16.45 ,-16.43	5849380, 3628007, 4117140, 5389514, 5141298, 3079684, 1770210,	0.194763 -0.34967 -0.10186 0.885083 -0.14000 -0.16418 -0.21253	16156E-04,114 225640E-05,11 163215E-04,11 12151E-05,114 102361E-04,11 143937E-04,11	300.0000,304.253; 4300.0000,302.11; 4300.0000,307.30; 300.0000,301.892; 4300.0000,299.39; 4300.0000,310.22;	2072 1374 4237 5191 5583 4053 3058
	8	* X Critical C	* × /veset2.and 	<pre>* / Vese02.and </pre> <pre>()COBTA[151.1603737</pre>	<pre>* / VendZami)</pre>	<pre>* / VendE.aml</pre>	<pre>* / VendElami (([CDATA[151.1603737,-16.49326186.0.30022]</pre>	<pre>* / VenetZiml</pre>	<pre>* / VenetZimd * ([CDATA[151.160373716.49326186.0.3002239021E-04.114300.0000.303.419:</pre>

Total number of vessels grounding: 784 (out of 1019 vessels)

Number of unique reef segments hit: 76 (out of 2139 reefs in the domain)

59.8% of all grounding vessels hit Reef Segment 1933

46.9% of all vessels hitting Reef Segment 1933 grounds within 24 hours

Handling of uncertainty of forcings or vessel config

DriftingVessel_user6_Quasi.ecc	olab		
* *	Set_Wind		
wqts Gorcing Auxiliaries Processes Derived Outputs PassiveDrifter itstet Variables	Symbol Description	Set_Wind	
		Setting the wind data	*
	Online help	PassiveDrifter_Arithmetic_Expression_1 Online help	
Constants Restricted area search	Documentation		view view
Arithmetic Expressions Set_Vessel Set_Vessel2 Set_Vessel3 Set_WaterDepth Set_Density	Output	YES	
	Spatial var.	PER_INDIVIDUAL	*
	Unit	undefined	
	Referenced in	Not used I	
Set_Flow Set_Waves Set_TP Set_DragCurveFilePath: Set_ConverganceParam Compute_Drift Get_YawUni Get_RelDir	Expression	SET_WIND (IF(U_RAND()>=0.5,wind_u+(WindDeviation*wind_u(U_RAND()),wind_u-(WindDeviation*wind_u(U_RAND()),wind_u-(WindDeviation*wind_u(U_RAND()))	<u>un*wind_u*<i>U_RAND</i>()))</u> ,
Get_RelSpeed Acc_density Horizontal Movement		4 W	E.
III >			
n Error message s Warning: The selected built-in	ID is deprecated and	should not be used for new templates	

Inbuilt Probability Functions

- •> Uniform
- Normal
- Exponential
- Possion
- Gamma
- Binomial

Conditional Onset of Moored Vessel Drift – Tropical Cyclones

Conditional Onset of Moored Vessel Drift – Loss of Propulsion

20/07/2014 22:15:00 Time Step 1 of 96.

