

Developing Decision Support Tools for Offshore and Nearshore Marine Operations

Matthew Zed – Snr Metocean Engineer Grant Elliott – Chief Metocean Meteorologist | July 2017

Disclaimer and important notice

This presentation contains forward looking statements that are subject to risk factors associated with oil and gas businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to: price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimates, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory developments, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

All references to dollars, cents or \$ in this presentation are to US currency, unless otherwise stated.

References to "Woodside" may be references to Woodside Petroleum Ltd. or its applicable subsidiaries.

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

Accurate vs. Effective Forecasting

Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

Where are we Heading

Safety Moment - El Faro

El Faro - A 700 foot liberty ship based in Jaxonville was en-route to Puerto Rico

33 Crew on board

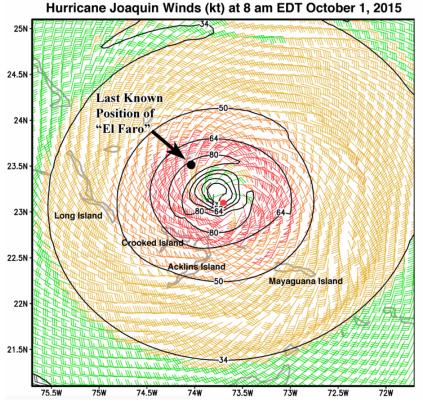
Vessel due to arrive in San Juan at 5:00pm Friday October 2nd

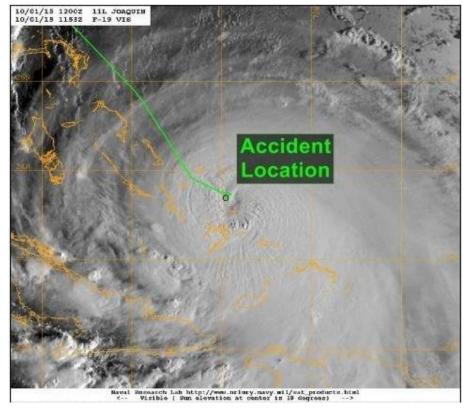
Vessel sailed into the path of Hurricane Joaquin

At 7:00am on Thursday the vessel, in the cusp of a category 4 Hurricane, the vessel lost power and began taking on water

Shortly after the vessel sank

None of the crew survived


Safety Moment - EL Faro



Safety Moment - EL Faro

Weather Underground source: https://www.wunderground.com/blog/JeffMasters/last-known-position-of-the-missing-ship-el-faro-the-eyewall-of-catego.html

NPR source: http://www.npr.org/sections/thetwo-way/2016/12/13/505422633/maybe-im-just-being-a-chicken-little-transcript-describes-ships-final-hours

Safety Moment - EL Faro: Some Outcomes...

\$7M lawsuit targets weather company for sinking of El Faro

Several insurance companies are suing a company that provides weather forecasting services, claiming one of the company's products is to blame for the sinking of the cargo ship El Faro.

The suit, filed in Florida federal court, alleges the Bon Voyage System version 7 (BVS 7), used by El Faro, "provided **delayed, inaccurate, and misleading information** the Vessel about the position of the storm and was a substantial factor in the Vessel sailing nearly directly into the eye of the hurricane."

Source: http://wgme.com/news/i-team/7m-lawsuit-targets-weather-company-for-sinking-of-el-faro

NTSB Recommendations Aimed at Getting Better Weather Information to Mariners

The National Transportation Safety Board issued 10 safety recommendations aimed at **enhancing the availability** of weather information to mariners after it was revealed that critical tropical cyclone information issued by the NWS is not always available to mariners via well-established broadcast methods.

Further, factual data on the official forecasts for Hurricane Joaquin and other recent tropical cyclones suggest that a new emphasis on improving hurricane forecasts is warranted.

Source: https://www.ntsb.gov/news/press-releases/Pages/pr20170629.aspx

Decision Support Tool Essentials

woodside

An effective decision support tool must:

- Provide timely information
- Provide effective information (multiple sources, accurately <u>defines risk</u>)
- Meet the needs and capabilities of the customer
- Be accessible to all key stakeholders
- Be reliable (consider failure modes?)
- Be auditable (enable interrogation by an expert)

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

Accurate vs. Effective Forecasting

Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

Where are we Heading

Woodside Metocean Team

Grant Elliott Chief Metocean Meteorologist

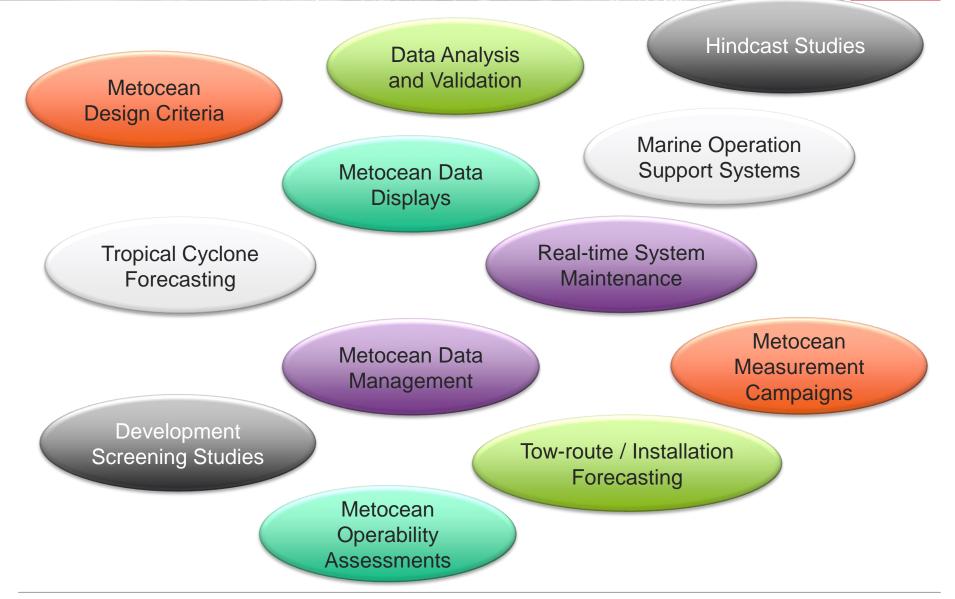
3Yrs Woodside

Matthew Zed Senior Metocean Engineer

3Yrs Woodside

Alessio Mariani Metocean Engineer

2Yrs Woodside



Ron Hille Senior Metocean Forecaster

Casual

Focus areas for a Metocean Engineer at Woodside

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

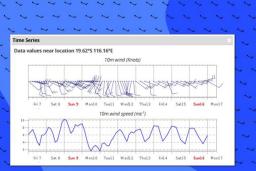
Developing Decision Support Tools

Accurate vs. Effective Forecasting

Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

Where are we Heading


Metocean Concerns for the Oil and Gas Industry

Key Inclement Metocean Concerns

- Tropical Cyclones
- Squalls
- Persistent strong winds (non-⁻
- Excessive rainfall / left
- Swells (large and sn
- Eddies
- Solitons / shelf curre

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

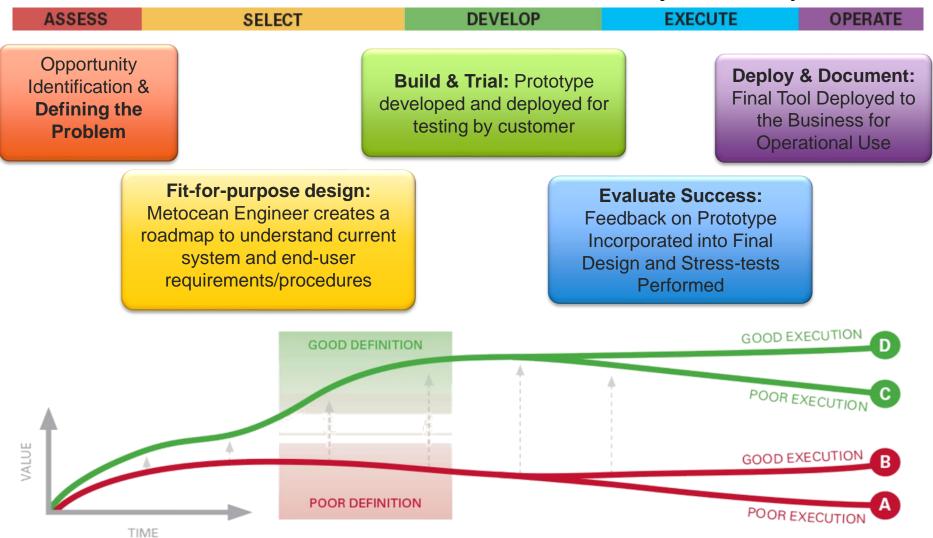
Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

Accurate vs. Effective Forecasting

Where We Are Now


Case Study – Tropical Cyclone Dashboard Development Processish

Where are we Heading

Developing Decision Support Tools – The Process

No Need to reinvent the Wheel > Utilise Woodside's Project Delivery Process

Understanding The Customer:

- 1. Their metocean tolerances and response procedures
- 2. Accuracy requirements i.e. their acceptable level of uncertainty

3.	Required forecast horizon	Internal (Customers to M	etocean
4.	Communication Platforms	EMERGENCY MANAGEMENT	DRILLING	LOGISTICS
5.	Expertise of the end-user	TECHNOLOGY & DEVELOPMENT PLANNING	METOCEAN	ONSHORE ASSETS
		OPERATIONS	AVIATION	GEOSPATIAL

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

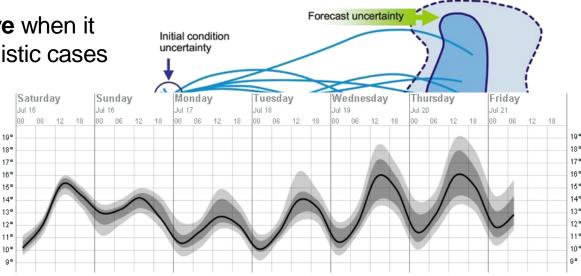
Accurate vs. Effective Forecasting

Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

Where are we Heading

Accurate vs. Effective Forecasting


Many operators rely on deterministic guidance only i.e. forecast providing single most detailed estimate of future conditions (P50)

Integrity (**accuracy**) of the forecast is challenged when the outcome differs from the forecast > Forecaster tries to capture this with an uncertainty estimate

Uncertainty estimate generally based on past performance (forecast vs. actual) or climatology, which doesn't capture "physically" plausible future conditions from the current systems state

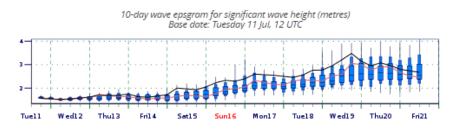
Forecast becomes **less effective** when it captures these physically unrealistic cases

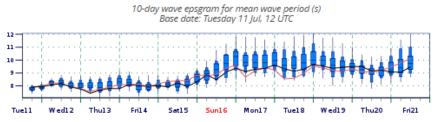
Solution = ensemble-based approach

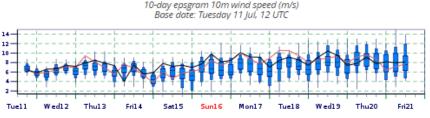
Source: https://www.yr.no/place/Norway/Hordaland/Bergen/Bergen/long.html

Accurate vs. Effective Forecasting

Rather than using a single (deterministic) forecast run, forecasts make use of multiple ensemble forecasts which investigate the space of possible outcomes from a given initial state (nowcast).


Ensemble spread is used to define the range of potential future conditions (hence quantify uncertainty based on current system state)


High spread = low confidence = less predictable future state


Low spread = high confidence = more predictable future state

Customer can apply their risk acceptance to this spread

(Generally expressed as % of ensemble exceedances above tolerance)

ECMWF source: http://eccharts.ecmwf.int/dashboard/

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

Accurate vs. Effective Forecasting

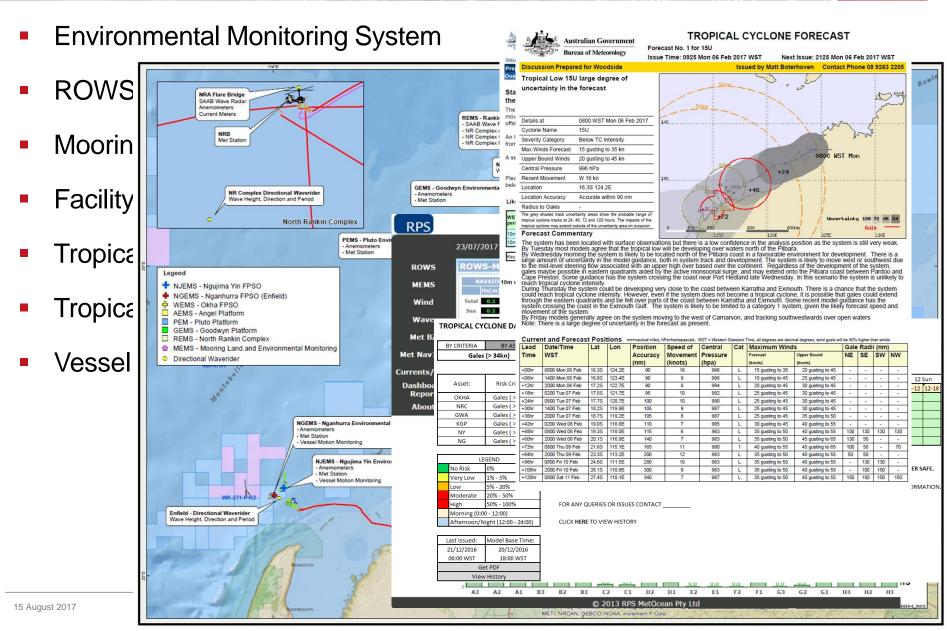
Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

Where are we Heading

Decision Support Tools Currently in Operation

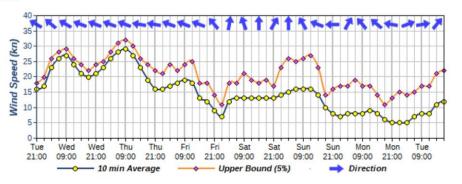
Applying ensemble-based forecasting for TC/Non-TC conditions


Tropical Cyclone Dashboard

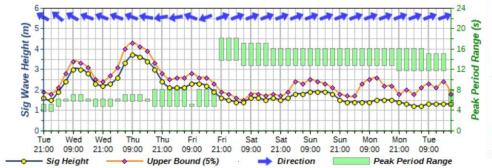
Case Study – Tropical Cyclone Dashboard Development Process

ROWSv2

Metocean Decision Support Tools at Woodside



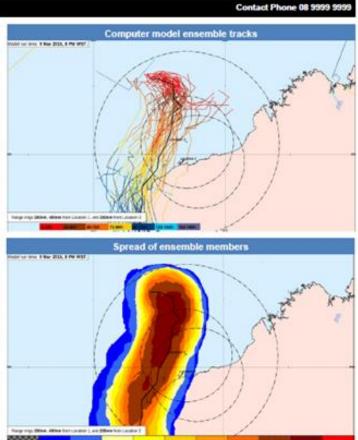
Where are We Now – Ensemble-based forecasting


Likelihood of exceedance of nominated threshold values (%)

WST, 12 hour period starting	Tue 27 Jun 21:00	Wed 28 Jun 09:00	Wed 28 Jun 21:00	Thu 29 Jun 09:00	Thu 29 Jun 21:00	Fri 30 Jun 09:00	Fri 30 Jun 21:00	Sat 01 Jul 09:00	Sat 01 Jul 21:00	Sun 02 Jul 09:00	Sun 02 Jul 21:00	Mon 03 Jul 09:00	Mon 03 Jul 21:00	Tue 04 Jul 09:00
10m wind speed ≥25 ki	80	80	92	92	4	8	0	4	16	24	0	0	0	0
10m wind speed ≥35 ki	0	0	0	0	0	0	0	0	2	2	0	0	0	0
Sig wave height ≥3.0 m	0	76	84	100	0	2	0	0	0	0	0	2	0	2
Sig wave height ≥5.0 m	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	-	-			-				-				
Key: Very L	ow Less than	n 5%		Low	5% to less t	han 20%	Mode	erate 20	% to less th	nan 50%	Hig	n 50%	or more	

10m wind speed

Total significant wave height



Computer Model Tropical System Forecast

Issue Time: 0600 Thu 28 Nov 2013 WST

Next issue: 1600 Thu 28 Nov 2013 WST

woodside

Graphics courtesy of Aust. Bureau of Meteorology

TROPICAL CYCLONE DASHBOARD

Accet	Risk Criteria:		07	Tue			08 \	Wed	ed 09 Thu 10 Fri			11 Sat				12 Sun									
Asset:	Risk Criteria:	0-6	6-12	12-18	18-24	0-6	6-12	12-18	18-24	0-6	6-12	12-18	18-24	0-6	6-12	12-18	18-24	0-6	6-12	12-18	18-24	0-6	6-12	12-18	18-24
OKHA	Gales (> 34kn)			16	53	61	67	80	65	35	10	2													
NRC	Gales (> 34kn)			8	45	51	59	71	65	43	14	2													
GWA	Gales (> 34kn)			8	45	51	59	71	65	43	14	2													
KGP	Gales (> 34kn)			10	20	49	65	80	65	47	14	2													
NY	Gales (> 34kn)						2	25	51	65	53	33	12	4											
NG	Gales (> 34kn)						2	25	51	65	53	33	12	4											

L	EGEND			
No Risk	0%			
Very Low	1% - 5%			
Low	5% - 20%			
Moderate	20% - 50%			
High	50% - 100%			
Morning (0:00 - 12:00)				
Afternoon/I	Night (12:00 - 24:00)			

Get PDF View History

Model Base Time:

20/12/2016

18:00 WST

Last Issued:

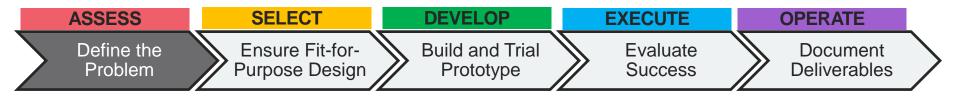
21/12/2016

06:00 WST

REMEMBER:

WE ARE HERE FOR THE LONG TERM. WE LOOK AFTER EACH OTHER, OUR COMMUNITIES AND THE ENVIRONMENT. WE KEEP EACH OTHER SAFE.

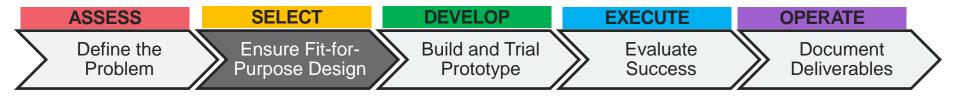
DATA PROVIDED BY THE BUREAU OF METEOROLOGY, DERIVED FROM 51 ENESEMBLE ECMWF MODEL RUNS. CLICK HERE FOR MORE INFORMATION.


FOR ANY QUERIES OR ISSUES CONTACT

CLICK HERE TO VIEW HISTORY

Let's look at the Tool Development Process as it was applied to this scenario ...

Tropical Cyclone Dashboard – Problem Definition



Design a tool that can be used to report on tropical cyclone risk to assets in the North West Shelf and effectively inform Woodside decision makers.

Tropical Cyclone Dashboard – Fit-for-Purpose Design

A Collaborative Approach

- Identify & interview key stakeholders
- Collect requirements & additional information
- Manage Scope

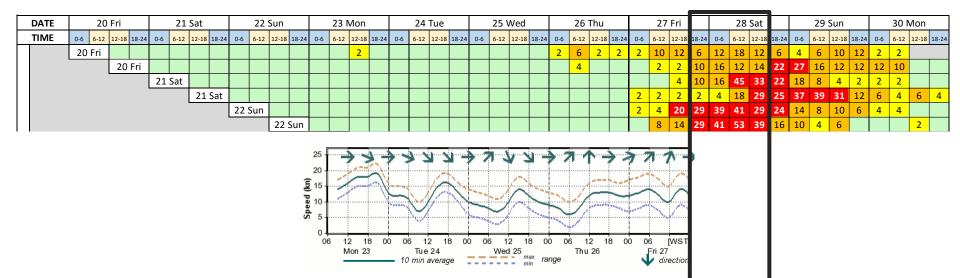
Tropical Cyclone Dashboard – Prototype Development

TROPICAL CYCLONE DASHBOARD

BY CRITERIA	BY ASSET	
Gales	(> 34kn)	V

Asset:	Risk Criteria:	06 Mon							
Asset.	KISK CITCEIId.	0-6	6-12	12-18	18-24				
ОКНА	Gales (> 34kn)				2				
NRC	Gales (> 34kn)								
GWA	Gales (> 34kn)								
KGP	Gales (> 34kn)				2				
NY	Gales (> 34kn)								
NG	Gales (> 34kn)								

BY CRITERIA	BY ASSET	
0	KHA	V

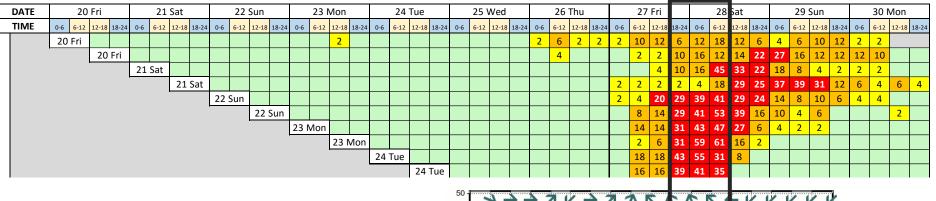

Asset:	Risk Criteria:	06 Mon						
Asset.	KISK CITTEITA.	0-6	6-12	12-18	18-24			
OKHA	Gales (> 34kn)				2			
OKHA	Hurricane (> 64kn)							
OKHA	Waves (> 3m)			2	6			
OKHA	Waves (> 5m)							

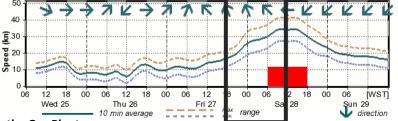
- Prototype trialled by a select user-group
- Preliminary output distributed to key stakeholders under test conditions
- Feedback sought and recorded

Tropical System 14U

TROPICAL CYCLONE FORECAST: Probability of Gale Force Winds (> 34kn) at Karratha Gas Plant , January 2017

Tropical System 14U

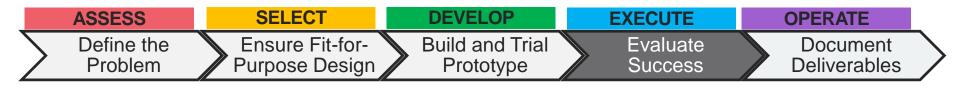



LEGEND No Risk (0%) Very Low (1% - 5%) Low (5%-20%) Moderate/High (20% - 100%) Day (6:00 - 18:00) Night (18:00 - 6:00) Data Not Available

Tropical System 14U


TROPICAL CYCLONE FORECAST: Probability of Gale Force Winds (> 34kn) at Karratha Gas Plant , January 2017

Tropical System 14U



TROPICAL CYCLONE FORECAST: Probability of Gale Force Winds (> 34kn) at Karratha Gas Plant , January 2017

LEGEND
No Risk (0%) Very Low (1% - 5%) Low (5%-20%) Moderate/High (20% - 100%) Day (6:00 - 18:00) Night (18:00 - 6:00) Data Not Available



"For me the value in the simply tabular format is that it **quickly** and **concisely communicates** the range of outcomes we should plan for when run against a number of criteria (for example 3, 5, 7m waves) or against a single criteria which may be a trigger point for disconnect, down man, shutdown etc. It addresses what can be a tendency to be somewhat blinkered when reviewing deterministic forecast tools" – Woodside Operator

Preparing for the Next Cyclone Season

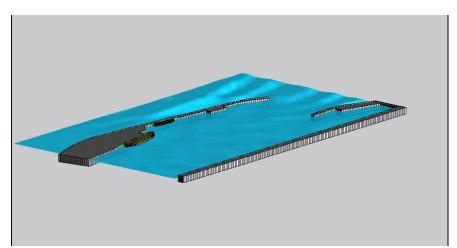
Document dashboard design
Record stakeholder feedback
Obtain final approval from Operations Lead and SMEs
Operationalise system on real-time infrastructure

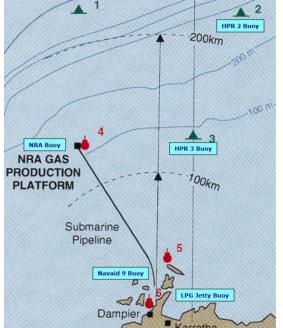
Applying ensemble-based forecasting for TC/Non-TC conditions

Tropical Cyclone Dashboard Case Study – Tropical Cyclone Dashboard Development Process

ROWSv2

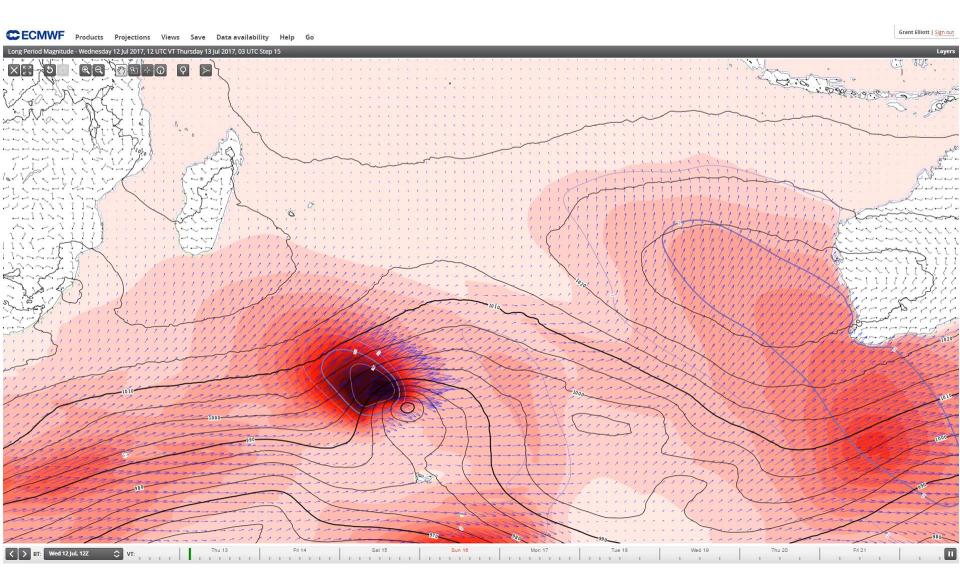
Swell Forecasting across NW Shelf



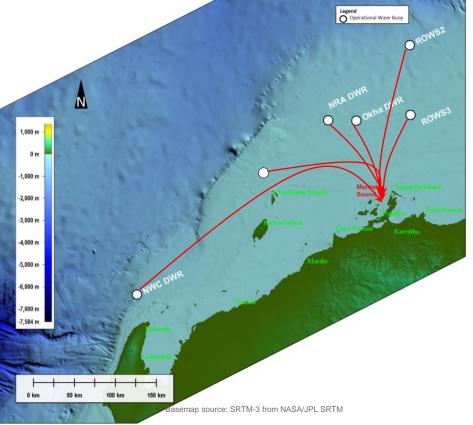

Woodside ROWS employed by KGP Marine Operations since late 1980's

System effective during certain Tropical Cyclone conditions, however, accuracy in capturing critical swells limited due to lack of available measurements upstream

Large southern ocean swells responsible for mooring line failures at KGP Berths AND critical parameter during sensitive offshore operations (topside and pipe installation, landing BOP's etc.)


Required expansion of system to capture swell propagation across the NW Shelf

Swell Source for NW Shelf


ROWSv2

GOOD (CURRENT) – Offshore wave transformation for early Tropical Cyclone swell warning for KGP Maine Operations

BETTER (2016 Update) – Expansion of tool to incorporate southern ocean swell and improved berth operability curves

BEST (2017 Update) – Increase forecast locations, improved reliability through cost-effective redundancy and expansion of tool to provide swell forewarning for multiple locations on the NW Shelf

Contents

Safety Moment

Introduction – Decision Support Tool Essentials

Being a Metocean Engineer at Woodside

Key Concerns for the Industry

Developing Decision Support Tools

Accurate vs. Effective Forecasting

Where We Are Now

Case Study – Tropical Cyclone Dashboard Development Process

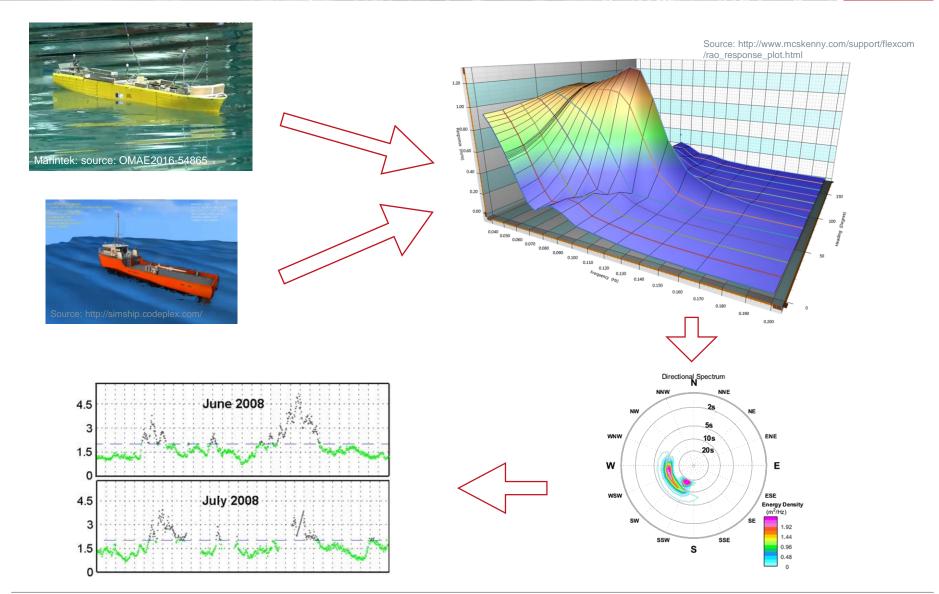
Where are we Heading

Digital forecast displays with user-group optimisation

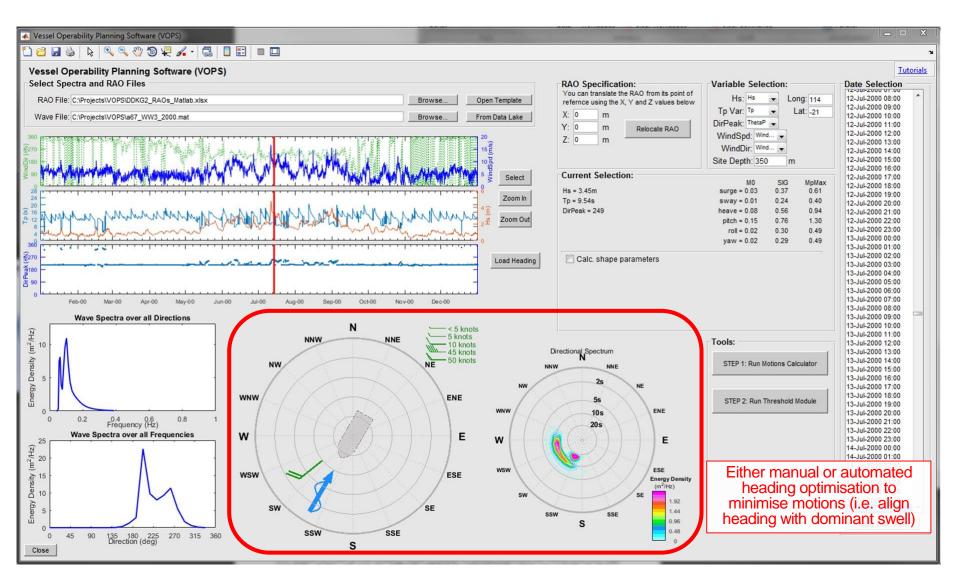
Motion-based forecasts and heading optimisation

Digital Forecast Displays – User-based Optimisation

≡ MetInsight North Rankin, WNRC FORECASTS OBSERVATIONS ALERTS July 13 2017 7:00 AM E/SE morning surges expected on Thursday through Sunday, reaching to between 12-18kts. With a high pressure system building over central WA expect a surge in Ely winds each morning expected over the next few days, likely to be between 12-18kts. Winds may ease from early next week as another significant cold front impacts the southwest corner of the state, eroding the E'ly gradient over the Pilbara and offshore waters. A moderate long-period swell is forecast to move up the west coast peaking at your location later on Friday and early Saturday morning, although significant wave heights will remain below 2.0m. The next long period swell pulse onsets on Sunday and peaks on Tuesday. THURS Confidence: High Precis: Sunny. VIS 0600-1800WST: 10km+. SST: 25 Sunrise: 06:50 Sunset: 17:52 Wind Wave AM: Mean winds 2/10 knots
Total waves 0.7-0.8 m Wind Wave PM: Mean winds 7/13 knots
br>Total waves 1.1-1.2 m Thresholds Total Wave Peak Dir (*) 12 Seas wind rain 250.0 teno wave 200 Mon Fri Est Sect 10 \$0.0 Seas Peak Dir (*) = Swell Swell #2 = Wind Speed 10m (kn) 20.6 150.0 Wind Speed 50m (kn) = Wind Direction (*) = -Air Temperature (°C)


Digital forecast displays

ter X	Forecast API		0.3.0 -						
ata		8							
ta Query.	Documentation for accessing f	data							
recasts									
arn Site list	Data								
entory									
irn forecast fields for a	Data - Data Query.	0.2.0							
iite.	GET								
	/api/forecasts/data								
	(apr) for claster act								
	Usage examples:								
			>" "http:// <site address:port="" number="">/api/forecasts/data?site=WORN&Field</site>						
			>" "http:// <site address:port="" number="">/api/forecasts/data?site=WORN&field</site>						
	curt -X GET -H "Authorization: «To	KEN String	>" "http:// <site address:port="" number="">/api/forecasts/data?site=WORN&field</site>						
	4								
	Header								
	Field	n							
	Authorization	ss Authentication token.							
	Parameter								
	Field	Туре	Description						
	site	String	String identifying sitecode						
		String	Measurement field url encoded JSON Object String Array, where each array element is a						
	field	Sumg	string. Requires at least one string in JSON array.						
	field	String							
			string. Requires at least one string in JSON array. Start-time string (ISO 8601 date YYYY-MM-DD) or (date shorthand syntax [-7\d*						
	s e coptional	String	string. Requires at least one string in JSON array. Start-time string (ISO 8601 date YYYY-MM-DD) or (date shorthand syntax [-7\d* [WwDdMm]])						
	5	String	string. Requires at least one string in JSON array. Start-time string (ISO 8601 date YYYY-MM-DD) or (date shorthand syntax [-7\d* [WwDdMm]])						


Motion Operability Module – Simple Theory

Motion Operability Module – User Interface

Weather Window – Sustained 36hr period below limits shown

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
Heave 1.5m	49%	57%	52%	51%	46%	45%	44%	37%	42%	51%	50%	59%	58%
Heave 2.0m	61%	68%	65%	64%	56%	59%	55%	50%	55%	60%	62%	70%	68%
Heave 2.5m	66%	69%	69%	69%	60%	64%	61%	57%	60%	65%	67%	75%	72%
Heave 3.0m	67%	70%	71%	70%	62%	67%	62%	58%	62%	67%	69%	77%	73%
Heave 3.5m	68%	70%	71%	70%	63%	67%	63%	59%	62%	67%	69%	77%	73%
Heave 4.0m	68%	70%	71%	70%	63%	67%	63%	59%	62%	67%	69%	77%	73%

Breaking Technology Limitations

Global forecast model resolution (temporal and spatial) improvements

How does this help?

Global forecast model resolution improvements

Continual improvements to model resolution (ECMWF, CFS, BLUElink, HYCOM etc) is enabling smaller scale features to be captured

Deterministic atmospheric forecasts approaching resolutions where parametric nesting of Tropical Cyclone wind fields is no longer required

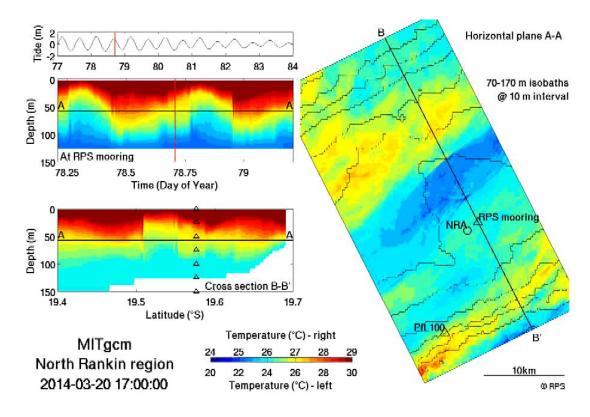
Deterministic circulation models now capturing eddy formation and dissipation at much greater accuracy

Deterministic wave models resolving more bathymetric features = capturing shoaling processes at a finer scale

> Ensemble solutions will eventually follow

So what new opportunities does this present for the offshore O&G industry?

MPAS-O: Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232. doi:10.1016/j.ocemod.2013.04.010 (pdf) source: https://mpas-dev.github.io/ocean.html


One thought... Soliton Forecasting

Emerging circulation models with tidal forcing (OzROMS, OCEANmaps-ROMS) enabling internal tide to be forecasted out to ~7 days

Understanding the generation mechanisms enables favourable conditions for formation to be identified in forecasts

Could enable potential forewarning such events

Animation courtesy of K. Shimizu & S. Buchan @ RPS Australia Ltd.

An effective decision support tool must:

- Provide timely information
- Provide effective information (multiple sources, accurately <u>defines risk</u>)
- Meet the needs and capabilities of the customer
- Be accessible to all key stakeholders
- Be reliable (consider failure modes?)
- Be auditable (enable interrogation by an expert)